SUNY Geneseo Department of Computer Science
{Date}
CSci 141, Fall 2003
Prof. Doug Baldwin
Lab available in lab sessions tomorrow
Exam 2 next Wednesday (Nov. 19)
Recurrence relations and "display"
display()
if ( ! this.isEmpty() )
print this.root()
this.left().display()
this.right().display()
Number of primitive tree messages
Recurrence relation:
Won't usually be n-1 nodes on one side and n-2 on other
Look for a pattern in f(n):
n | f(n) | |
---|---|---|
0 | 1 | |
1 | 4+f(0)+f(0) = 4 + 1 + 1 | |
2 | 4 + f(1) + f(0) | |
= 4 + 4 + 1 + 1 + 1 | ||
3 | 4 + f(n1) + f(n2) | |
a) | 4 + f(2) + f(0) | |
= 4 + 4 + 4 + 1 + 1 + 1 + 1 | ||
b) | 4 + f(1) + f(1) | |
= 4 + 4 + 1 + 1 + 4 + 1 + 1 | ||
= 4 + 4 + 4 + 1 + 1 + 1 + 1 |
f(n) = 4n + (n+1) ?
Prove by strong induction on n
Due date for Lab 11 extended to Thursday, 11/13, so people can incorporate this idea into the other recurrences if they wish.
Tree traversals