Limits of Functions
Before we can give the definition of the limit of a function, we need the notion of a cluster point of a set.
A number \(c\in\real\) is called a cluster point of \(A\) if for any given \(\delta \gt 0\) there exists at least one point \(x\in A\), with \(x\neq c\), such that \(|x-c| \lt \delta\).
Hence, \(c\) is a cluster point of \(A\) if there are points in \(A\) that are arbitrarily close to \(c\). In general, a cluster point of \(A\) is not necessarily an element of \(A\). Naturally, cluster points can be characterized using limits of sequences.
A point \(c\) is a cluster point of \(A\) if and only if there exists a sequence \((x_n)\) in \(A\) such that \(x_n\neq c\) and \(\displaystyle\limi x_n = c\).
Let \(c\) be a cluster point of \(A\) and let \(\delta_n=\frac{1}{n}\) for \(n\in\N\). Then by definition of a cluster point, there exists \(x_n\in A\), \(x_n\neq c\), such that \(|x_n-c| \lt \delta_n\). Since \(\delta_n\rightarrow 0\) then \(x_n \rightarrow c\).
To prove the converse, suppose that \(x_n \rightarrow c\), \(x_n\neq c\) and \(x_n\in A\) for \(n\in\mathbb{N}\). Then by convergence of \((x_n)\) to \(c\), for any \(\delta \gt 0\) there exists \(K\in\mathbb{N}\) such that \(|x_K-c| \lt \delta\). Since \(x=x_K\in A\), this proves that \(c\) is a cluster point of \(A\).
Below are some examples of cluster points for a given set:
We now give the definition of the limit of a function \(f:A\rightarrow\real\) at a cluster point \(c\) of \(A\).
- Consider the set \(A=[0,1]\). Every point \(c\in A\) is a cluster point of \(A\).
- On the other hand, for \(A=(0,1]\), the point \(c=0\) is a cluster point of \(A\) but does not belong to \(A\).
- For \(A=\left\{\frac{1}{n}\;|\; n\in\N\right\}\), the only cluster point of \(A\) is \(c=0\).
- A finite set does not have any cluster points.
- The set \(A=\N\) has no cluster points.
- Consider the set \(A=\mathbb{Q}\cap [0,1]\). By the Density theorem, every point \(c\in [0,1]\) is a cluster point of \(A\).
Consider a function \(f:A\rightarrow\real\) and let \(c\) be a cluster point of \(A\). We say that \(f\) has a limit at \(c\), or converges at \(c\), if there exists a number \(L\in \real\) such that for any given \(\varepsilon \gt 0\) there exists \(\delta \gt 0\) such that if \(x\in A\) and \(0 \lt |x-c| \lt \delta\) then \(|f(x)-L| \lt \varepsilon\). In this case, we write that
\[
\lim_{x\rightarrow c} f(x) = L
\]
and we say that \(f\) converges to \(L\) at c, or that \(f\) has limit \(L\) at \(c\). If \(f\) does not converge at \(c\) then we say that \(f\) diverges at \(c\).
Another short-hand notation to denote that \(f\) converges to \(L\) at \(c\) is \(f(x)\rightarrow L\) as \(x\rightarrow c\).
By definition, if \(\lim_{x\rightarrow c}f(x)=L\), then for any \(\varepsilon \gt 0\) there exists a \(\delta \gt 0\) such that for all \(x\in (c-\delta,c+\delta)\cap A\) not equal to \(c\) it holds that \(f(x)\in (L-\varepsilon,L+\varepsilon)\).
A function \(f:A\rightarrow\real\) can have at most one limit at \(c\).
Suppose that \(f(x)\rightarrow L\) and \(f(x)\rightarrow L'\) as \(x\rightarrow c\), and let \(\varepsilon \gt 0\). Then there exists \(\delta \gt 0\) such that \(|f(x)-L| \lt \eps/2\) and \(|f(x)-L'| \lt \eps/2\), for all \(x\in A\) satisfying \(0 \lt |x-c| \lt \delta\). Then if \(0 \lt |x-c| \lt \delta\) then
\begin{align*}
|L-L'| &\leq |f(x)-L|+|f(x)-L'|\\
& \lt \eps/2+\eps/2\\
& =\eps.
\end{align*}
Since \(\eps \gt 0\) is arbitrary, Theorem 2.2.7 implies that \(L=L'\).
Consider the function \(f(x) = 5x+3\) with domain \(A=\real\). Prove that
\[
\lim_{x\rightarrow 2} f(x) = 13.
\]
We begin by analyzing the quantity \(|f(x)-13|\):
\begin{align*}
|f(x)-13|&= |5x+3-13|\\
&= |5x-10|\\
& = 5 |x-2|.
\end{align*}
Hence, if \(0 \lt |x-2| \lt \eps/5\) then
\begin{align*}
|f(x)-13| &= |5x+3-13|\\
&= 5|x-2|\\
& \lt 5 (\eps/5)\\
& = \eps.
\end{align*}
Thus, given \(\eps \gt 0\) we let \(\delta = \eps/5\) and thus if \(0 \lt |x-c| \lt \delta\) then \(|f(x) - 13| \lt \eps\). Thus, by definition, \(\lim_{x\rightarrow 2}f(x) = 13\).
Consider the function \(f(x) = \frac{x+1}{x^2+3}\) with domain \(A=\real\). Prove that
\[
\lim_{x\rightarrow 1}f(x) = \frac{1}{2}.
\]
We have that
\begin{align*}
|f(x) - \tfrac{1}{2}| &= \left|\frac{x+1}{x^2+3}-\frac{1}{2}\right| \\[2ex]
&= \left|\frac{x^2-2x+1}{2(x^2+3)}\right|\\[2ex]
&= \frac{|x-1|^2}{2(x^2+3)} \\[2ex]
& \lt |x-1|^2.
\end{align*}
Let \(\eps \gt 0\) be arbitrary and let \(\delta=\sqrt{\eps}\). Then if \(0 \lt |x-1| \lt \delta\) then \(|x-1|^2 \lt \delta^2 = \eps\). Hence, if \(0 \lt |x-1| \lt \delta\) then
\begin{align*}
|f(x)-\tfrac{1}{2}| &= \left|\frac{x+1}{x^2+3}-\frac{1}{2}\right| \\[2ex]
& \lt |x-1|^2\\
& \lt \eps.
\end{align*}
Thus, by definition, \(\lim_{x\rightarrow 1}f(x) = \tfrac{1}{2}\).
Consider the function \(f(x) = x^2\) with domain \(A=\real\). Prove that for any \(c\in\real\),
\[
\lim_{x\rightarrow c} f(x) = c^2.
\]
We first note that
\[
|f(x)-c^2| = |x^2-c^2| = |x+c| |x-c|.
\]
By the triangle inequality, \(|x+c| \leq |x|+|c|\) and therefore
\begin{align*}
|f(x)-c^2| &= |x+c| |x-c|\\[2ex]
& \leq (|x|+|c|) |x-c|.
\end{align*}
We now need to analyze how large \(|x|\) can become when \(x\) is say within \(\overline{\delta} \gt 0\) of \(c\). To be concrete, suppose that \(\overline{\delta} = 1/2\). Hence, if \(0 \lt |x-c| \lt \overline{\delta}\) then
\begin{align*}
|x| &= |x-c+c|\\
& \leq |x-c| + |c|\\
& \lt \overline{\delta} + |c|\\
& \lt 1 + |c|.
\end{align*}
Therefore, if \(0 \lt |x-c| \lt \overline{\delta}\) it holds that
\begin{align*}
|f(x)-c^2| &\leq (|x|+c) |x-c|\\[2ex]
& \lt (1 + c) |x - c|.
\end{align*}
Now suppose that \(\eps \gt 0\) is arbitrary and let \(\delta=\min\{\overline{\delta}, \frac{\eps}{1+|c|}\}\). Then if \(0 \lt |x-c| \lt \delta\) then \(|x| \lt 1+|c|\) and therefore
\begin{align*}
|f(x)-c^2| &= |x^2-c^2|\\[2ex]
&=|x+c||x-c|\\[2ex]
& \leq (|x|+|c|)\cdot \delta\\[2ex]
& \lt (1+|c|)\cdot \frac{\eps}{1 + |c|}\\[2ex]
& = \eps.
\end{align*}
This proves, by definition, that \(\lim_{x\rightarrow c} x^2 = c^2\) for any \(c\in\real\).
Consider the function \(f(x) = \frac{x^2-3x}{x+3}\) with domain \(A=\real\backslash\hspace{-0.3em}\{-3\}\). Prove that
\[
\lim_{x\rightarrow 6} f(x) = 2.
\]
We first note that \(c=-3\) is indeed a cluster point of \(A=\real\backslash\hspace{-0.3em}\{-3\}\). Now,
\begin{align*}
|f(x)-2| &= \left|\frac{x^2-3x}{x+3} - 2\right|\\[2ex]
&=\left|\frac{x^2-5x-6}{x+3}\right|\\[2ex]
&= \left|\frac{(x+1)(x-6)}{(x+3)}\right|\\[2ex]
&= \frac{|x+1|}{|x+3|} |x-6|.
\end{align*}
We now obtain a bound for \(\frac{|x+1|}{|x+3|}\) when \(x\) is close to \(6\). Suppose then that \(|x-6| \lt 1\). Then \(5 \lt x \lt 7\) and therefore, \(6 \lt x+1 \lt 8\), which implies that \(|x+1| \lt 8\). Similarly, if \(|x-6| \lt 1\) then \(8 \lt x+3 \lt 10\) and therefore \(8 \lt |x+3|\), which implies that \(\frac{1}{|x+3|} \lt \frac{1}{8}\). Therefore, if \(|x-6| \lt 1\) then
\[
\frac{|x+1|}{|x+3|} \lt 8\cdot \frac{1}{8}=1.
\]
Suppose now that \(\eps \gt 0\) is arbitrary and let \(\delta=\min\{1,\eps\}\). If \(0 \lt |x-6| \lt \delta\) then from our analysis above it follows that \(\frac{|x+1|}{|x+3|} \lt 1\). Therefore, if \(0 \lt |x-6| \lt \delta\) then
\begin{align*}
|f(x)-2| &= \left|\frac{x^2-3x}{x+3} - 2\right| \\[2ex]
&= \frac{|x+1|}{|x+3|} |x-6|\\[2ex]
& \lt 1 \cdot \delta\\
& \leq \eps.
\end{align*}
This proves that \(\lim_{x\rightarrow 6} f(x) = 2\).
Consider the function \(f:\real\rightarrow\real\) defined as
\[
f(x) = \begin{cases}
(x-1)\arctan(x), & x\in\mathbb{Q}\\
\frac{3(x-1)}{1+x^2}, & x\notin\mathbb{Q}.
\end{cases}
\]
Prove that \(\lim_{x\rightarrow 1}f(x) = 0\).
If \(x\in\mathbb{Q}\) then
\begin{align*}
|f(x)| &= |(x-1)\arctan(x)|\\
&= |x-1| |\arctan(x)|\\
&= |x-1| \cdot \tfrac{\pi}{2}
\end{align*}
and if \(x\notin\mathbb{Q}\) then
\begin{align*}
|f(x)| &= \left|\frac{3(x-1)}{1+x^2}\right|\\
&= \frac{3|x-1|}{1+x^2}\\
&\leq 3|x-1|.
\end{align*}
Therefore, for all \(x\in\real\) it holds that \(|f(x)| \leq 3|x-1|\) since \(\pi/2 \lt 3\). Thus, given \(\eps \gt 0\) let \(\delta = \eps/3\) and thus if \(0 \lt |x-1| \lt \delta\) then
\begin{align*}
|f(x)| &\leq 3 |x-1|\\
& \lt 3\cdot\delta\\
&= 3\cdot \eps/3\\
&= \eps.
\end{align*}
This proves that \(\lim_{x\rightarrow 1}f(x) = 0\).
The following important result states that limits of functions can be studied using limits of sequences.
Let \(f:A\rightarrow\real\) be a function and let \(c\) be a cluster point of \(A\). Then \(\lim_{x\rightarrow c} f(x) =L\) if and only if for every sequence \((x_n)\) in \(A\) converging to \(c\) (with \(x_n\neq c\) for all \(n\in\mathbb{N}\)) the sequence \((f(x_n))\) converges to \(L\).
Suppose that \(\lim_{x\rightarrow c} f(x) =L\). Let \((x_n)\) be a sequence in \(A\) converging to \(c\), with \(x_n\neq c\) for all \(n\in\N\). We must prove that the sequence \((f(x_n))\) converges to \(L\). To that end, let \(\eps \gt 0\) be arbitrary. Then, by convergence of \(f\) to \(L\) at \(c\), there exists \(\delta \gt 0\) such that if \(0 \lt |x-c| \lt \delta\) then \(|f(x)-L| \lt \eps\). Now, since \((x_n)\rightarrow c\), there exists \(K\in\N\) such that \(|x_n-c| \lt \delta\) for all \(n\geq K\). Therefore, for \(n\geq K\) we have that \(|f(x_n)-L| \lt \eps\). This proves that \(\lim_{n\rightarrow\infty} f(x_n) = L\).
To prove the converse, we prove the contrapositive. Hence, we must show that if \(f\) does not converge to \(L\) then there exists a sequence \((x_n)\) in \(A\) (with \(x_n\neq c\)) converging to \(c\) but the sequence \((f(x_n))\) does not converge to \(L\). Assume then that \(f\) does not converge to \(L\). Then, negating the definition of the limit of a function, there exists \(\eps \gt 0\) such for all \(\delta \gt 0\) there exists \(x\in A\) such that \(0 \lt |x-c| \lt \delta\) and \(|f(x)-L|\geq \eps\). Then, let \(\delta_n=\tfrac{1}{n}\) for \(n\in\N\). Then there exists \(x_n\neq c\) such that \(0 \lt |x_n-c| \lt \delta_n\) and \(|f(x_n)-L|\geq \eps\). Since \(\delta_n\rightarrow 0\) then \((x_n)\rightarrow c\) but clearly \(f(x_n)\) does not converge to \(L\). This ends the proof.
The following theorem follows immediately from Theorem 4.1.11.
Let \(f:A\rightarrow\real\) be a function and let \(c\) be a cluster point of \(A\) and let \(L\in\real\). Then \(f\) does not converge to \(L\) at \(c\) if and only if there exists a sequence \((x_n)\) in \(A\) converging \(c\), with \(x_n\neq c\) for all \(n\in\mathbb{N}\), and such that \((f(x_n))\) does not converge to \(L\).
Note that in Corollary 4.1.12, if the sequence \((f(x_n))\) diverges then by definition it does not converge to any \(L\in \real\) and then \(f\) does not have a limit at \(c\). When applicable, the following corollary is a useful tool to prove that a limit of a function does not exist.
Let \(f:A\rightarrow\real\) be a function and let \(c\) be a cluster point of \(A\). Suppose that \((x_n)\) and \((y_n)\) are sequences in \(A\) converging to \(c\), with \(x_n\neq c\) and \(y_n\neq c\) for all \(n\in\N\). If \(f(x_n)\) and \(f(y_n)\) converge but
\[
\limi f(x_n) \neq \limi f(y_n)
\]
then \(f\) does not have a limit at \(c\).
Prove that \(\lim_{x\rightarrow 0}\frac{1}{x}\) does not exist.
Consider \(x_n=\frac{1}{n}\), which clearly converges to \(c=0\) and \(x_n\neq 0\) for all \(n\in\N\). Then \(f(x_n)= n \) which is unbounded and thus does not converge. Thus, by Corollary 4.1.12, \(\lim_{x\rightarrow 0}\frac{1}{x}\) does not exist.
Prove that \(\lim_{x\rightarrow 0}\sin\left(\tfrac{1}{x}\right)\) does not exist.
Let \(f(x)=\sin\left(\tfrac{1}{x}\right)\) with domain \(A=\real\backslash\hspace{-0.3em}\{0\}\). Consider the sequence \(x_n=\frac{1}{\pi/2+n\pi}\). It is clear that \((x_n)\rightarrow 0\) and \(x_n\neq 0\) for all \(n\in\N\). Now \((f(x_n))=(-1,1,-1,-1,\ldots)\) and therefore \((f(x_n))\) does not converge. Therefore, \(f\) has no limit at \(c=0\). In fact, for each \(\alpha\in[0,2\pi)\), consider the sequence \(x_n=\frac{1}{\alpha+2n\pi}\). Clearly \((x_n)\rightarrow 0\) and \(x_n\neq 0\) for all \(n\in\N\). Now, \(f(x_n)=\sin(\alpha+2n\pi)=\sin(\alpha)\). Hence, \((f(x_n))\) converges to \(\sin(\alpha)\). This shows that \(f\) oscillates within the interval \([-1,-1]\) as \(x\) approaches \(c=0\).
The sign function, denoted by \(\text{sgn}:\real\rightarrow\real\), is defined as
\[
\text{sgn}(x) = \begin{cases} 1, & x\geq 0\\-1, & x \lt 0\end{cases}
\]
Prove that \(\lim_{x\rightarrow 0}\text{sgn}(x)\) does not exist.
Consider the sequence \(x_n=\frac{(-1)^n}{n}\). Then \((x_n)\rightarrow 0\) and \(x_n\neq 0\) for all \(n\in\N\). Now, \(y_n=\text{sgn}(x_n) = (-1)^n\) and thus \((y_n)\) does not converge. Therefore, by Corollary 4.1.12, the function \(\text{sgn}\) has no limit at \(c=0\).
Exercises
Use the definition of the limit of a function to prove that the following limits do indeed hold.
- \(\displaystyle\lim_{x\rightarrow 3} \frac{2x+3}{4x-9} = 3\)
- \(\displaystyle\lim_{x\rightarrow 6} \frac{x^2-3x}{x+3} = 2\)
- \(\displaystyle\lim_{x\rightarrow 4} |x-3| = 1\)
Let \(A\subset\real\), let \(f:A\rightarrow\real\), and suppose that \(c\) is a cluster point of \(A\). Suppose that there exists a constant \(K \gt 0\) such that \(|f(x)-L|\leq K|x-c|\) for all \(x\in A\). Prove that \(\displaystyle\lim_{x\rightarrow c} f(x) = L\).
Consider the function
\[
f(x) = \begin{cases} x^2\sin(1/x), & x\in\mathbb{Q}\backslash\hspace{-0.3em}\{0\}\\[2ex] \frac{x^2}{1+x^2}, & x\notin\mathbb{Q}.\end{cases}
\]
Prove that \(\lim_{x\rightarrow 0} f(x) = 0\).
Let \(f:\real\rightarrow\real\) be defined as follows:
\[
f(x) = \begin{cases} x, & \text{if } x\in\mathbb{Q}\\[2ex]
-x, & \text{if } x\in\real\backslash\hspace{-0.3em}\mathbb{Q}.\end{cases}
\]
- Prove that \(f\) has a limit at \(c=0\).
- Now suppose that \(c\neq 0\). Prove that \(f\) has no limit at \(c\).
- Define \(g:\real\rightarrow\real\) by \(g(x)=(f(x))^2\). Prove that \(g\) has a limit at any \(c\in\real\).
Hint: The Density Theorem will be helpful for (b). In particular, the Density Theorem implies that for any point \(c\in \real\), there exists a sequence \((x_n)\) of rational numbers such that \((x_n)\rightarrow c\), and that there exists a sequence \((y_n)\) of irrational numbers such that \((y_n)\rightarrow c\).
Use any applicable theorem to explain why the following limits do not exist.
- \(\lim_{x\rightarrow 0}\frac{1}{x^2}\)
- \(\lim_{x\rightarrow 0}(x+\text{sgn}(x))\)
- \(\lim_{x\rightarrow 0} \sin(1/x^2)\)
Recall that the function \(\text{sgn}:\real\rightarrow\real\) is defined as follows:
\[
\text{sgn}(x) = \begin{cases} 1, & x\geq 0\\-1, & x \lt 0\end{cases}
\]
- \(\displaystyle\lim_{x\rightarrow 3} \frac{2x+3}{4x-9} = 3\)
- \(\displaystyle\lim_{x\rightarrow 6} \frac{x^2-3x}{x+3} = 2\)
- \(\displaystyle\lim_{x\rightarrow 4} |x-3| = 1\)
- Prove that \(f\) has a limit at \(c=0\).
- Now suppose that \(c\neq 0\). Prove that \(f\) has no limit at \(c\).
- Define \(g:\real\rightarrow\real\) by \(g(x)=(f(x))^2\). Prove that \(g\) has a limit at any \(c\in\real\).
- \(\lim_{x\rightarrow 0}\frac{1}{x^2}\)
- \(\lim_{x\rightarrow 0}(x+\text{sgn}(x))\)
- \(\lim_{x\rightarrow 0} \sin(1/x^2)\)
Limit Theorems
In this section, we establish basic limit theorems for limits of functions. The reader should compare the results of this section with Section 3.2 where we established limit theorems for sequences. In fact, thanks to the sequential criterion for limits of functions (Theorem 4.1.11), all of the theorems in this section can be proved using limits of sequences. To begin, we first show that if \(f\) has a limit at \(c\) then \(f\) satisfies a local boundedness property at \(c\). Let us first define then what it means for a function to be locally bounded at a given point.
Consider a function \(f:A\rightarrow\real\) and let \(c\) be a cluster point of \(A\). We say that \(f\) is bounded locally at \(c\) if there exists \(\delta \gt 0\) and \(M \gt 0\) such that if \(x\in (c-\delta,c+\delta)\cap A\) then \(|f(x)|\leq M\).
Consider a function \(f:A\rightarrow\real\) and let \(c\) be a cluster point of \(A\). If \(\displaystyle\lim_{x\rightarrow c}f(x)\) exists then \(f\) is bounded locally at \(c\).
Let \(L=\lim_{x\rightarrow c} f(x)\) and let \(\eps \gt 0\) be arbitrary. Then there exists \(\delta \gt 0\) such that \(|f(x)-L| \lt \eps\) for all \(x\in A\) such that \(0 \lt |x-c| \lt \delta\). Therefore, for all \(x\in A\) and \(0 \lt |x-c| \lt \delta\) we have that
\begin{align*}
|f(x)| &= |f(x)-L+L|\\
& \leq |f(x)-L| + |L|\\
& \lt \eps +|L|.
\end{align*}
If \(c\in A\) then let \(M=\max\{|f(c)|, \eps + |L|\}\) and if \(c\notin A\) then let \(M=\eps+|L|\). Then \(|f(x)|\leq M\) for all \(x\in A\) such that \(0 \lt |x-c| \lt \delta\), that is, \(f\) is bounded locally at \(c\).
Consider the function \(f(x)=\frac{1}{x}\) defined on the set \(A=(0,\infty)\). Clearly, \(c=0\) is a cluster point of \(A\). For any \(\delta \gt 0\) and any \(M \gt 0\) let \(x\in A\) be such that \(0 \lt x \lt \min\{\delta,\frac{1}{M}\}\). Then \(0 \lt x \lt \frac{1}{M}\), that is, \(M \lt \frac{1}{x}=f(x)\). Since \(M\) was arbitrary, this proves that \(f\) is unbounded at \(c=0\) and consequently \(f\) does not have a limit at \(c=0\).
We now state and prove some limit laws for functions. Let \(f,g:A\rightarrow\real\) be functions and define the functions \((f + g)\), \((f-g)\), \(fg\), and \(f/g\) on \(A\) as follows:
\begin{align*}
(f\pm g)(x) &= f(x) \pm g(x)\\[2ex]
(fg)(x) &= f(x)g(x)\\[2ex]
\left(\frac{f}{g}\right)(x) &= \frac{f(x)}{g(x)}
\end{align*}
where for \(f/g\) we require that \(g(x)\neq 0\) for all \(x\in A\).
Let \(f,g:A\rightarrow\real\) be functions and let \(c\) be a cluster point of \(A\). Suppose that \(\lim_{x\rightarrow c}f(x) = L\) and \(\lim_{x\rightarrow c}g(x)=M\). Then
The proofs are left as an exercises. (To prove the results, use the sequential criterion for limits and the limits laws for sequences).
- \(\displaystyle\lim_{x\rightarrow c} (f\pm g)(x) = L \pm M\)
- \(\displaystyle\lim_{x\rightarrow c} (fg)(x) = LM\)
- \(\displaystyle\lim_{x\rightarrow c} \left(\frac{f}{g}\right)(x) = \frac{L}{M}\), if \(M\neq 0\)
Let \(f_1,\ldots,f_k:A\rightarrow\real\) be functions and let \(c\) be a cluster point of \(A\). If \(\lim_{x\rightarrow c} f_i(x)\) exists for each \(i=1,2,\ldots,k\) then
- \(\displaystyle\lim_{x\rightarrow c} \sum_{i=1}^k f_i(x) = \sum_{i=1}^k \lim_{x\rightarrow c} f_i(x)\)
- \(\displaystyle\lim_{x\rightarrow c} \prod_{i=1}^k f_i(x) = \prod_{i=1}^k \lim_{x\rightarrow c} f_i(x)\)
If \(f(x)=a_0 + a_1 x + a_2x^2 + \cdots + a_n x^n\) is a polynomial function then \(\lim_{x\rightarrow c} f(x) = f(c)\) for every \(c\in\real\). If \(g(x) = b_0 + b_1 x + b_2 x+ \cdots + b_m x^m\) is another polynomial function and \(g(x)\neq 0\) in a neighborhood of \(x=c\) and \(\lim_{x\rightarrow c} g(x) = g(c)\neq 0\) then
\[
\lim_{x\rightarrow c} \frac{f(x)}{g(x)} = \frac{f(c)}{g(c)}.
\]
Prove that \(\displaystyle\lim_{x\rightarrow 2}\frac{x^2-4}{x-2}=4\).
We cannot use the Limit Laws directly since \(\lim_{x\rightarrow 2} (x-2)=0\). Instead, notice that if \(x\neq 2\) then \(\frac{x^2-4}{x-2}=x+2\). Hence, the functions \(f(x)=\frac{x^2-4}{x-2}\) and \(g(x)=x+2\) are equal at every point in \(\real\backslash\hspace{-0.3em}\{0\}\). It is clear that \(\lim_{x\rightarrow 2} g(x)= 4\) and therefore it follows that also \(\lim_{x\rightarrow 2}f(x) = 4\).
Let \(f:A\rightarrow\real\) be a function and let \(c\) be a cluster point of \(A\). Suppose that \(f\) has limit \(L\) at \(c\). If \(f(x)\geq 0\) for all \(x\in A\) then \(L\geq 0\).
We prove the contrapositive. Suppose then that \(L \lt 0\). Let \(\eps \gt 0\) be such that \(L+\eps \lt 0\). Then since \(\lim_{x\rightarrow c} f(x) = 0\), there exists \(\delta \gt 0\) such that if \(0 \lt |x-c| \lt \delta\) then \(f(x) \lt L+\eps \lt 0\). Hence, \(f(x) \lt 0\) for some \(x\in A\).
We give another proof using the sequential criterion for limits. To that end, if \(f\) converges to \(L\) at \(c\) then for any sequence \((x_n)\) converging to \(c\), \(x_n\neq 0\), we have that \(f(x_n)\rightarrow L\). Now \(f(x_n)\geq 0\) and therefore \(L\geq 0\) from our results on limits of sequences (Theorem 3.2.7).
Let \(f:A\rightarrow\real\) be a function and let \(c\) be a cluster point of \(A\). Suppose that \(M_1\leq f(x) \leq M_2\) for all \(x\in A\) and suppose that \(\lim_{x\rightarrow c}f(x) = L\). Then \(M_1\leq L\leq M_2\).
We have that \(0\leq f(x)-M_1\) and therefore by Theorem 4.2.8 we have that \(0\leq L-M_1\). Similarly, from \(0\leq M_2 -f(x)\) we deduce that \(0\leq M_2 - L\). From this we conclude that \(M_1\leq L\leq M_2\). An alternative proof: Since \(f\rightarrow L\) at \(c\), for any sequence \((x_n)\rightarrow c\) with \(x_n\neq 0\), we have that \(f(x_n)\rightarrow L\). Clearly, \(M_1\leq f(x_n)\leq M_2\) and therefore \(M_1\leq L\leq M_2\) from our results on limits of sequences (Theorem 3.2.7).
The following is the Squeeze Theorem for functions.
Let \(f,g,h:A\rightarrow\real\) be functions and let \(c\) be a cluster point of \(A\). Suppose that \(\displaystyle\lim_{x\rightarrow c}g(x) = L\) and \(\displaystyle\lim_{x\rightarrow c}h(x) = L\). If \(g(x)\leq f(x)\leq h(x)\) for all \(x\in A\), \(x\neq c\), then \(\displaystyle\lim_{x\rightarrow c}f(x) = L\).
Let \((x_n)\) be a sequence in \(A\) converging to \(c\) with \(x_n\neq c\) for all \(n\in\N\). Then, by the sequential criterion,
\[
L=\lim_{n\rightarrow\infty} g(x_n) = \lim_{n\rightarrow\infty} h(x_n).
\]
By assumption, it holds that \(g(x_n)\leq f(x_n)\leq h(x_n)\) for all \(n\in\N\), and therefore by the Squeeze Theorem for sequences, we have that \(\lim_{n\rightarrow\infty} f(x_n)=L\). This holds for every such sequence and therefore \(\lim_{x\rightarrow c}f(x) = L\).
Let
\[
f(x) = \begin{cases} x^2\sin(1/x), & x\in\mathbb{Q}\backslash\hspace{-0.3em}\{0\}\\[2ex] x^2\cos(1/x), & x\notin\mathbb{Q}\\[2ex] 0, & x=0.\end{cases}
\]
Show that \(\lim_{x\rightarrow 0} f(x) = 0\).
We end this section with the following theorem.
Let \(f:A\rightarrow\real\) be a function and let \(c\) be a cluster point of \(A\). Suppose that \(\lim_{x\rightarrow c}f(x) = L\). If \(L \gt 0\) then there exists \(\delta \gt 0\) such that \(f(x) \gt 0\) for all \(x\in (c-\delta, c+\delta)\), \(x\neq c\).
Choose \(\eps \gt 0\) so that \(L-\eps \gt 0\), take for example \(\eps=L/2\). Then there exists \(\delta \gt 0\) such that \(L-\eps \lt f(x) \lt L+\eps\) for all \(x\in (c-\delta, c+\delta)\), \(x\neq c\), and thus by transitivity it follows that \(0 \lt f(x)\) for all \(x\in (c-\delta, c+\delta)\), \(x\neq c\).