	Worksheet	5:	Force	Table,	Parts	С	&	D
--	-----------	----	-------	--------	-------	---	---	---

Name: _____

Due October 9, 2024

Partner:	Pencil only: use of Pen is forbidden.
Part C: Draw vectors \vec{F}_1 and \vec{F}_2 "head to tail" in your notebool Recall 1 cm = 50 g	(i.e., not both starting in the middle!) Recall that $F_{1x} = -195 \text{ g}, F_{1y} = -530 \text{ g}$ $F_{2x} = +380 \text{ g}, F_{2y} = +140 \text{ g}$
• Into what quadrant does \vec{F}_1 point?	Computation of F_1 from givens: <u>cm</u>
Unit Conversion: corresponding m_1 :g	Computation of θ_{F1} from givens:°
• Into what quadrant does \vec{F}_2 point?	Computation of F_2 from givens: <u></u>
Unit Conversion: corresponding <i>m</i> ₂ :g	Computation of θ_{F2} from givens:°
Add vector \vec{F}_3 to your logbook drawing, such that $\vec{F}_1 + \vec{F}_2$	\vec{F}_3 forms a closed triangle.
• Into what quadrant does \vec{F}_3 point?	Measurement of F_3 with ruler: <u>cm</u>
Unit Conversion: corresponding <i>m</i> ₃ :g	Measurement of θ_{F3} with protractor:
Computation of F_{3x} from F_3 , θ_{F3} : cm	Computation of F_{3y} from F_3 , θ_{F3} : cm
 On a new page in your logbook, redraw \$\vec{F}_1\$, \$\vec{F}_2\$, and \$\vec{F}_3\$ so Add masses \$m_1\$, \$m_2\$, \$m_3\$ to the force table. 	that they now all start at the origin.

Discuss: How well balanced is the ring? When you look at the force table from above, how does it compare to your logbook diagram?

• Your first diagram showed $\vec{F}_1 + \vec{F}_2 + \vec{F}_3$ "head to tail". Make a new "head to tail" drawing, in the order $\vec{F}_2 + \vec{F}_1 + \vec{F}_3$.

Part D: Individual Skill Test. This is similar to part C. You will be graded only on your computation of m_3 and θ_3 . Note that the magnitudes are *already* in grams, so there's no good reason to convert to cm. Ask Dr. Pogo for the following values:

Skill Test #		Tries:		Correct Try #:
<i>m</i> ₁ :	g	<i>θ</i> ₁ :	0	
<i>m</i> ₂ :	g	θ ₂ :	0	

Your Results:

*m*₃: _____ θ₃: _____ °