Worksheet 4: Force Table, Parts A & B | Name: | | Due October 2, | 2024 | |---|------------------|---|----------| | Partner: | | Pencil only: use of Pen is forbi | dden. | | Part A: Your logbook already has very accurat | e drawings of v | vectors \vec{A} , \vec{B} , and \vec{C} . Recall notation: $A \equiv \vec{A} $. | | | • Into what quadrant does \vec{A} point? | | $(\vec{A} = +6 \operatorname{cm} \hat{x} - 9 \operatorname{cm} \hat{y})$ | | | Measurement of A with ruler: | cm | Measurement of θ_A with protractor: | 0 | | Computation of <i>A</i> from givens: | cm | Computation of θ_{A} from givens: | 0 | | • Into what quadrant does \vec{B} point? | | $(\vec{B} = -8 \operatorname{cm} \hat{x} + 6 \operatorname{cm} \hat{y})$ | | | Measurement of <i>B</i> with ruler: | cm | Measurement of θ_B with protractor: | 0 | | Computation of <i>B</i> from givens: | cm | Computation of $\theta_{\rm B}$ from givens: | 0 | | • Into what quadrant does \vec{C} point? | | $(\vec{C} = 12 \text{ cm at an angle of } 235^\circ)$ | | | Measurement of C_x with ruler: | cm | Measurement of C_y with ruler: | cm | | Computation of C_x from givens: | cm | Computation of C_y from givens: | cm | | Part B: The lab manual has very accurate draw | rings of vectors | \vec{F}_1 and \vec{F}_2 . Recall notation: $F_1 \equiv \left \vec{F}_1 \right $. | | | • Into what quadrant does \vec{F}_1 point? | | Into what quadrant does \vec{F}_2 point? | | | Measurement of F_1 with ruler: | cm | Measurement of F_2 with ruler: | cm | | Measurement of θ_{F1} with protractor: | 0 | Measurement of θ_{F2} with protractor: | 0 | | Computation of F_{1x} from F_1 , θ_{F1} : | cm | Computation of F_{2x} from F_2 , θ_{F2} : | cm | | Computation of F_{1y} from F_1 , θ_{F1} : | cm | Computation of F_{2y} from F_2 , θ_{F2} : | cm | | Unit Conversion: corresponding m_1 : | <u>g</u> | Unit Conversion: corresponding m_2 : | <u>g</u> | | Trial and Error: m_3 to reach balance: | g | Trial and Error: θ_3 to reach balance: | 0 | | Computation of F_{3x} from F_{1x} , θ_{F2x} : | cm | Computation of F_{3y} from F_{1y} , θ_{F2y} : | cm | | Computation of F_3 from F_{3x} , F_{3y} : | cm | Computation of θ_3 from F_{3x} , F_{3y} : | 0 | | Unit Conversion: corresponding m_3 : | <u>g</u> | | | | Unit Conversion: $F_{3x} \rightarrow m_{3x}$: | g | Unit Conversion: $F_{3y} \rightarrow m_{3y}$: | g | | Discuss: Assume that uncertainties using the ru Discuss the overall patterns of agreement | | 0.5 mm, and for the protractor are about ±0.5°. es for which you now have two values: | | | | | | | | | | | |