Worksheet 4: Force Table, Parts A & B

Name:		Due October 2,	2024
Partner:		Pencil only: use of Pen is forbi	dden.
Part A: Your logbook already has very accurat	e drawings of v	vectors \vec{A} , \vec{B} , and \vec{C} . Recall notation: $A \equiv \vec{A} $.	
• Into what quadrant does \vec{A} point?		$(\vec{A} = +6 \operatorname{cm} \hat{x} - 9 \operatorname{cm} \hat{y})$	
Measurement of A with ruler:	cm	Measurement of θ_A with protractor:	0
Computation of <i>A</i> from givens:	cm	Computation of θ_{A} from givens:	0
• Into what quadrant does \vec{B} point?		$(\vec{B} = -8 \operatorname{cm} \hat{x} + 6 \operatorname{cm} \hat{y})$	
Measurement of <i>B</i> with ruler:	cm	Measurement of θ_B with protractor:	0
Computation of <i>B</i> from givens:	cm	Computation of $\theta_{\rm B}$ from givens:	0
• Into what quadrant does \vec{C} point?		$(\vec{C} = 12 \text{ cm at an angle of } 235^\circ)$	
Measurement of C_x with ruler:	cm	Measurement of C_y with ruler:	cm
Computation of C_x from givens:	cm	Computation of C_y from givens:	cm
Part B: The lab manual has very accurate draw	rings of vectors	\vec{F}_1 and \vec{F}_2 . Recall notation: $F_1 \equiv \left \vec{F}_1 \right $.	
• Into what quadrant does \vec{F}_1 point?		Into what quadrant does \vec{F}_2 point?	
Measurement of F_1 with ruler:	cm	Measurement of F_2 with ruler:	cm
Measurement of θ_{F1} with protractor:	0	Measurement of θ_{F2} with protractor:	0
Computation of F_{1x} from F_1 , θ_{F1} :	cm	Computation of F_{2x} from F_2 , θ_{F2} :	cm
Computation of F_{1y} from F_1 , θ_{F1} :	cm	Computation of F_{2y} from F_2 , θ_{F2} :	cm
Unit Conversion: corresponding m_1 :	<u>g</u>	Unit Conversion: corresponding m_2 :	<u>g</u>
Trial and Error: m_3 to reach balance:	g	Trial and Error: θ_3 to reach balance:	0
Computation of F_{3x} from F_{1x} , θ_{F2x} :	cm	Computation of F_{3y} from F_{1y} , θ_{F2y} :	cm
Computation of F_3 from F_{3x} , F_{3y} :	cm	Computation of θ_3 from F_{3x} , F_{3y} :	0
Unit Conversion: corresponding m_3 :	<u>g</u>		
Unit Conversion: $F_{3x} \rightarrow m_{3x}$:	g	Unit Conversion: $F_{3y} \rightarrow m_{3y}$:	g
Discuss: Assume that uncertainties using the ru Discuss the overall patterns of agreement		0.5 mm, and for the protractor are about ±0.5°. es for which you now have two values:	