Ouiz #8

Name:

Use a pencil, not a pen.

Block m_1 rests on a table. A thin string passes horizontally from block 1, over a frictionless pulley, and then supports block m_2 . There is some friction μ_k between m_1 and the table.

Last week, we discovered that $a = \frac{m_2 g - \mu_k m_1 g}{m_1 + m_2}$.

Also, recall that $m_{\text{tot}} = m_1 + m_2$.

1. We intend to plot m_2 vs. a. To make this possible, our original formula can't have an m_1 in it. Replace each of the two m_1 symbols with $m_1 = m_{\text{tot}} - m_2$. Then, re-arrange the formula so that it is in the form:

$$m_2 =$$
(something #1)· a + (something #2)

Your answers may include the symbols m_{tot} , g, and μ_k . Don't show your work here... it should be in your logbook! Obviously, the slope is "something #1", and the intercept is "something #2".

Slope =
$$s$$
 =

Intercept =
$$b$$
 =

2. This is harder than it looks! Use the formula you wrote for the intercept to solve for μ_k . This is hard because μ_k is in there twice! Your answer may include the symbols m_{tot} and b.

$$\mu_{
m k}$$
 =

3. Assume that you've already solved for μ_k correctly. Now, look at the formula you wrote earlier for slope "s". Now solve this formula for g. It may include the symbols m_{tot} , g, s, and μ_k . Be careful that your "s" doesn't look like a "5".