Ouiz #8 Name: Use a pencil, not a pen. Block m_1 rests on a table. A thin string passes horizontally from block 1, over a frictionless pulley, and then supports block m_2 . There is some friction μ_k between m_1 and the table. Last week, we discovered that $a = \frac{m_2 g - \mu_k m_1 g}{m_1 + m_2}$. Also, recall that $m_{\text{tot}} = m_1 + m_2$. 1. We intend to plot m_2 vs. a. To make this possible, our original formula can't have an m_1 in it. Replace each of the two m_1 symbols with $m_1 = m_{\text{tot}} - m_2$. Then, re-arrange the formula so that it is in the form: $$m_2 =$$ (something #1)· a + (something #2) Your answers may include the symbols m_{tot} , g, and μ_k . Don't show your work here... it should be in your logbook! Obviously, the slope is "something #1", and the intercept is "something #2". Slope = $$s$$ = Intercept = $$b$$ = 2. This is harder than it looks! Use the formula you wrote for the intercept to solve for μ_k . This is hard because μ_k is in there twice! Your answer may include the symbols m_{tot} and b. $$\mu_{ m k}$$ = 3. Assume that you've already solved for μ_k correctly. Now, look at the formula you wrote earlier for slope "s". Now solve this formula for g. It may include the symbols m_{tot} , g, s, and μ_k . Be careful that your "s" doesn't look like a "5".