
Part I : Standing Waves   

 230 

Part I: Standing Waves 

Chapter 176. Standing Waves 

In some ways, standing waves are very similar to traveling waves.  But in others, they seem to break the 

usual wave behavior.  For example, they don’t transmit energy; indeed, they don’t transmit anything.  They 

can’t reflect or diffract, because they don’t travel through the medium.  And they have features that are 

never seen in traveling waves.  But we will see in this Part that they are so closely related to traveling waves, 

it really does make sense to include both of them in a single category of waves. 

One reason to learn about standing waves is that sound can form standing waves.  But standing waves also 

have another important connection to sound: they occur in and on many musical instruments.  Standing 

waves are especially likely to occur when the medium is of limited size, so that strings and tubes and 

drumheads are just the right places for them to occur. 

Most of the variety of characteristics described in Chapter 114 apply to standing waves as well as traveling 

waves.  For instance, there can be standing waves of all three dimensionalities, although this book has only 

a little about two-dimensional and nothing about three-dimensional standing waves.  There can also be a 

variety of ways that the pieces of the medium move.  However, in Chapter 114 those motions were 

categorized relative to the direction of wave travel.  Standing waves do not have that reference, so a direct 

correspondence to traveling wave types is not always clear.  For us, two observations will suffice.  First, if 

the density of the medium is varied by the standing wave, then it certainly qualifies as a compression wave.  

Second, in a one-dimensional medium, which will demand most of the attention here, transverse and 

longitudinal waves can be defined relative to the medium. 

Chapter 114 carefully defines the extent of a traveling wave, but this is rarely of interest for standing waves.  

Standing waves most often occur in a medium of limited size, in which case they usually fill the entire 

medium.  The duration of a standing wave is then the same thing as how long the wave persists, but unlike 

with traveling waves that has nothing to do with how large the wave is. 

Although standing waves can have many different shapes, sinusoidal shapes are special, just as is the case 

with traveling waves.  Chapter 186 discusses other shapes, but to understand them it is important to first 

consider the sinusoids. 

Figure 176.1 shows a sinusoidal transverse 

standing wave on a string with two fixed ends.  

First, focus only on the solid black curve.  This is a 

snapshot graph, a graph of the disturbance of the 

medium versus position at some specific moment 

in time.  Recall that although a snapshot graph 

sometimes looks like a photograph of the wave, the 

displacement axis scale is often magnified 

compared to the axis along the medium. 

To illustrate the motion of the standing wave, the 

figure shows snapshots from seven different times, 

all on top of each other.  Although this is suggestive of the motion in a standing wave, drawing so many 

snapshots quickly becomes tiresome.  On the other hand, drawing just a single snapshot (for instance, just 

the solid black curve) produces a graph that is indistinguishable from a traveling wave.  Whenever possible, 

this book will show standing waves by drawing snapshots of the two extremes of motion only.  In Figure 

176.1 those are the solid black and solid gray lines.  You should keep in mind that the wave is vibrating 

through all the intermediate positions as well. 

 

Figure 176.1 

Sinusoidal transverse standing wave on a string.  Nodes are 

indicated by arrows along bottom, antinodes are indicated 

by arrows along top. 
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The motion of a standing wave repeats in time.  For instance, starting when the string has the shape of the 

solid black line, the string will get straighter, and then bend to have the shape of the solid gray line, then 

return through straight and back to the solid black line.  Thus, the ideas of period and frequency from 

Chapter 10 apply here.  Notice that every small piece of the medium is also moving periodically, with the 

same period and frequency. 

Special features appearing in many standing waves are nodes, places where the medium is never disturbed 

at all.  These are marked in Figure 176.1 by the small arrows along the bottom.  In contrast, traveling waves 

never have nodes!  A snapshot of a traveling wave will have places where the disturbance is zero at that 

moment, but as the wave moves those positions get disturbed.  Notice that the ends of this string are included 

as nodes, even though they are somewhat special because they are required to be nodes by the fact that the 

string’s ends are fixed in place. 

Nodes contrast with antinodes, places where the medium is disturbed the most, which are marked in Figure 

176.1 by small arrows along the top.  Notice that an antinode is a specific position in the medium, not a 

specific displacement of that position.  Figure 176.1 has only four antinodes, not eight.  Although the string 

vibrates maximally at the antinodes, the antinodes themselves do not move at all. 

For a sinusoidal standing wave, each football-shaped part between neighboring nodes is called a loop.  At 

first glance, it might look as if the standing wave in Figure 176.1 is a series of loops, all the same.  However, 

looking closely we see that the loops differ in whether the top or bottom has the solid black line.  This 

means that for a single snapshot, the shape of this standing wave repeats every two loops.  The spatial length 

of one cycle is called the wavelength of the wave, symbolized by the Greek letter 𝜆 as shown in Figure 

176.1.  While the base unit for wavelength is the meter (just like any other length), it is often helpful to 

consider wavelength to have the unit m cycle⁄ .  This is similar to units for period; see Chapter 10.  Avoid 

confusion with the terms: the wavelength is not the same as the length of the wave. 

For a sinusoidal standing wave, each small piece of the medium is oscillating between two extremes.  We 

don’t yet have a particular reason to expect that motion to be SHM (other than the fact that sinusoids seem 

to pop up everywhere), but that does turn out to be the case.  Thus, each position along the string has an 

amplitude (and peak-to-peak amplitude) for its motion.  On the other hand, the amplitude of the standing 

wave as a whole is equal to the largest of these oscillation amplitudes, the amplitude at an antinode.  This 

is indicated by 𝑥𝑚𝑤 in Figure 176.1, to distinguish it from the regular oscillation amplitude 𝑥𝑚. 

Chapter 177. Countermoving Interference 

The connection between traveling waves and standing waves is revealed by investigating the superposition 

of two countermoving sinusoidal traveling waves of the same amplitude and frequency.  Superposition of 

two things with the same frequency has the special name interference.  (Chapter 39 gives the same name to 

the superposition of two vibrations with the same frequency.)  Since the two waves are traveling through 

the same medium, they must have the same wave speed. Since they have the same frequency, then by 

Eq. 121.2 they must also have the same wavelength. 
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The result is easier to see in an 

animation, but this book will do the 

best it can with static pictures.  

Figure 177.1 shows snapshot 

graphs of two such waves (the 

dashed lines) at eight sequential 

times.  You could think of these as 

transverse string waves, although 

the graphs work as any type of one-

dimensional wave.  After time (h), 

the movie would start over again 

with time (a).  Thus, the full figure 

shows one period of a repeating 

pattern.  The thin arrows show how 

specific wave crests, one on each 

traveling wave, advance through 

time.  

The solid line in Figure 177.1 

shows the superposition of the two 

snapshots at each time.  It turns out 

that the superposition of equal-

wavelength sinusoids is always 

another sinusoid. 

Looking at how the solid line 

changes with time reveals that 

these countermoving traveling 

waves have produced a sinusoidal 

standing wave!  More specifically 

notice that at the nodes of the 

standing wave, the two traveling 

waves are always out of phase, 

with equal magnitude 

displacements of opposite sign.  At 

the antinodes of the standing wave, 

the two traveling waves are always 

in phase, which is easier to see 

because it means that the curves of 

the traveling waves always cross at 

that point. 

The wavelength of the standing wave is the same as the wavelengths of the traveling waves.  In Figure 

177.1, the wavelength is half the width of the figure.  And the periods of all three are also the same, with 

the figure showing exactly one repeat of the motion.  This means that for standing waves, we can still use 

 𝑠 = 𝑓𝜆 , (177.1) 

even though for a standing wave nothing appears to be traveling at the speed 𝑠.  This speed is the rate at 

which traveling waves would move if they were present alone, so it can be found as usual for traveling 

waves, with whatever formula or table of information is appropriate for the medium. 

We know from Chapter 122 that one traveling sinusoidal wave would cause a particular piece of the medium 

to move in simple harmonic motion.  For the current example, the motion of a particular piece is the 

 

Figure 177.1 

Two countermoving sinusoidal waves (dashed black and gray) and their 

superposition (solid) at eight times through one period of the repetition.  

Diagonal arrows trace the motion of each wave from one snapshot to the next. 
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superposition of two such motions.  Just as the superposition of two snapshots of sinusoids with the same 

wavelength creates another sinusoid, it is also true that the superposition of two sinusoidal vibrations with 

the same period creates another SHM.  (You may have already seen that in Chapter 39.)  This all proves 

that in a sinusoidal standing wave, each piece of the medium oscillates with SHM.  Except, of course, the 

nodes, which don’t move at all—or is that SHM. with zero amplitude? 

Chapter 178. Pairs from Reflection 

Why, you might ask, would there be two countermoving waves that just happen to have exactly the same 

frequency?  After all, there is no restriction on what frequencies the traveling waves can have.  So, while 

Chapter 177 makes for a nice mathematical relationship, would it ever really happen? 

The answer is absolutely yes, because of reflection.  When a traveling wave reflects off the boundary of a 

medium, the reflected wave can automatically provide a countermoving wave of exactly the same frequency 

as the incident wave.  From one point of view, this is why standing waves are closely associated with media 

of limited size.  Limited size means plenty of ends or edges to reflect off 

In fact, we can relate the different sorts of reflection behavior, from Chapter 146, to corresponding parts of 

standing waves. 

If the end of the medium is fixed, then reflections are inverted.  This means that whatever the displacement 

of the incident wave at the boundary, the displacement of the reflected wave at the boundary has the same 

magnitude and opposite sign.  When these two are added together in superposition, they add to zero, so that 

the end is a node.  Of course, if the end is fixed, we knew it had to be a node, so there are no surprises here.  

But it is gratifying that the inversion-on-reflection rule is consistent with the end being fixed. 

A more illuminating case is the other extreme, a perfectly free end.  In Figure 177.1, we can consider the 

right side of the figure to be a free end, with the black dashed traveling wave incident on it, and the gray 

dashed traveling wave being reflected from it.  Because the reflection is upright, at the free end the incident 

and reflected waves have exactly the same displacement.  (The two waves are not identical, because the 

reflected wave is reversed left-to-right.)  As is apparent from the figure, the result of superposition is that 

the standing wave has an antinode at the free end. 

Chapter 179. Normal Modes with Fixed Ends 

179a. Loop Lengths 

This chapter will apply to standing waves the relationship Eq. 121.2, 𝑠 = 𝑓𝜆, where 𝑓 is frequency, 𝜆 is 

wavelength, and 𝑠 is the wave speed.  If you have read Chapter 177 then you have seen why this equation 

is applicable to standing waves even though nothing about the standing wave appears to be moving at a 

speed 𝑠.  Otherwise, you can just take it on faith.  We will only consider media that are uniform all along 

their length, so that 𝑠 is the same everywhere. 

The first consequence of that equation is that if a standing wave is to have alternating nodes and loops as 

in Figure 176.1, then the loops must all be the same length.  Each loop is oscillating up and down with the 

same frequency.  From that, Eq. 121.2 implies that the wavelength is the same everywhere, which means 

that the loops are all the same length. 

Of course, drawing a standing wave with different sized loops is already not a sinusoid, since sinusoids 

have humps and troughs of equal size.  Eq. 121.2 tells us this is closely connected to ensuring that the whole 

motion has the same frequency.  If you need to draw a standing wave, take care to have your nodes and 

antinodes evenly spaced. 
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179b. Two Fixed Ends 

Consider a 1D medium of length 𝐿 with two fixed ends, for instance a guitar string.  This limits the possible 

standing waves, because the ends must be nodes.  Combine this with the requirement for all loops to have 

the same length, and the only allowed sinusoidal standing wave shapes are those shown in Table 179.1.  

They are listed in order of the number of loops present, which in principle has no upper limit.  These are 

called the normal modes, or just the modes, of vibration for the string.  (The word “normal” here does not 

mean ordinary.  Normal is a mathematical term meaning something similar to perpendicular, although 

describing in what sense these things are perpendicular is beyond the scope of this book.)  Pay particular 

attention to the words “mode” and “node,” which mean completely different things, while they sound 

annoyingly similar. 

Table 179.1 lists some characteristics for these standing waves, including expressions in the bottom row 

that work for any of the modes.  The key number here is the number of loops 𝑛.  For some reason, many 

students find it attractive to count the number of nodes; while that is certainly closely related to the number 

of loops, it does not produce the simplest expressions. 

The pattern of frequencies in the rightmost column can be broken down as follows.  There is a lowest 

frequency called the fundamental frequency 

 𝑓1 =
𝑠

2𝐿
 . (179.1) 

The corresponding mode is called the fundamental mode, and both the frequency and mode are sometimes 

just referred to as the fundamental. 

All the other frequencies are positive integer multiples of that lowest frequency, which is called a harmonic 

relationship.  This can be expressed algebraically by the equation 

 𝑓𝑛 = 𝑛𝑓1 ,  𝑛 = positive integer. (179.2) 

These modes and frequencies are called harmonics.   The mode number 𝑛 is also called the harmonic 

number, and in this case is equal to the number of loops. 

Table 179.1 

Possible modes for sinusoidal standing wave on string with two fixed ends. 
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loops 

loop 
length 

λ 𝑓 =
𝑠

𝜆
 

 

 
 

⋮ 

1 𝐿 
2𝐿

1
 

𝑠

2𝐿
 

2 
𝐿

2
 

2𝐿

2
 2

𝑠

2𝐿
 

3 
𝐿

3
 

2𝐿

3
 3

𝑠

2𝐿
 

4 
𝐿

4
 

2𝐿

4
 4

𝑠

2𝐿
 

𝑛 
𝐿

𝑛
 

2𝐿

𝑛
 𝑛

𝑠

2𝐿
 

 



  Part I : Standing Waves 

 235 

If you have read Section 44a, you may recognize Eq. 179.2 as essentially identical to Eq. 44.1.  The 

relationships and jargon here are just the same as for the partials of a harmonic spectrum.  Mode number 

here plays a role very similar to partial number in Section 44a. 

Chapter 180. Mersenne’s Laws 

For the specific case of the vibration of a string, Eq. 179.1 can be combined with Eq. 119.1 for the speed 

of a wave on a string.  The result captures all the factors that influence the pitch of a string on a musical 

instrument such as a guitar or harp, 

 𝑓1 =
1

2𝐿
√

𝐹𝑇

𝜇
 . (180.1) 

The three relationships included in Eq. 180.1, relating frequency to string length, tension, and linear mass 

density, are called Mersenne’s Laws.  None of those relationships are direct proportions.  Although 

Eq. 180.1 is very useful in the specific case of vibrating strings, it is probably a better choice to learn 

Eqs. 119.1 and 179.1 separately.  Each one of those equations has a much wider range of application than 

just standing waves on a string.  You can easily reassemble them to create Eq. 180.1 when the occasion 

arises. 

Chapter 181. Normal Modes with Opposite Ends 

Consider a 1D medium of length 𝐿 with one fixed end and one free end.  It is unlikely that you will ever 

see this physically realized for a transverse string wave, because making the end of a string truly free is 

very difficult.  But Chapter 183 shows excellent examples of this case for longitudinal waves. 

The fixed end must once again be a node of the standing wave.  The free end must be an antinode of the 

standing wave (see Chapter 178 for the reason).  These facts combine with the “all loops the same size” 

rule to limit the possible standing waves to those shown in Table 181.1.  These normal modes are listed in 

order of number of loops.  Because of the different ends, there is always an extra half loop. 

Table 181.1 

Possible modes for sinusoidal standing wave on string with one fixed and one free end. 
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The general expressions in the last row are formatted so that they turn out to be identical to the expressions 

in Table 179.1 for two fixed ends.  The only difference is that the number of loops is now the variable 𝑚, 

which must be a positive half integer, 

 𝑓 = 𝑚
𝑠

2𝐿
 ,  𝑚 = positive half integer. (181.1) 

The term half integer refers to any integer plus one half.  (Notice that dividing an integer in half does not 

necessarily give a half integer.  Dividing (odd) 2⁄  yields a half integer, but dividing (even) 2⁄  yields 

another integer.) 

The fundamental frequency is different from the two-fixed-ends case, since the smallest 𝑚 value gives 

 𝑓1 =
1

2

𝑠

2𝐿
 . (181.2) 

The frequencies are again harmonic, meaning they are whole number multiples of a lowest frequency. By 

definition, the harmonic number of a mode is the ratio of its frequency to the fundamental frequency.  So 

in this case, the harmonic number 𝑛 is not equal to 𝑚, but is given by 

 𝑓𝑛 = 𝑛𝑓1 , (181.3) 

 𝑛 =
𝑓𝑛

𝑓1
=

𝑚
𝑠

2𝐿
1
2

𝑠
2𝐿

= 2𝑚 . (181.4) 

Since all 𝑚 values are half integers, the harmonic numbers 𝑛 are only odd numbers, so that the allowed 

frequencies are only the odd harmonics.  These frequencies and the normal mode frequencies from 

Section 179b are compared in Figure 181.1 for a single string length. 

Sometimes, the modes in Table 181.1 are referred to by which number row they are in.  This is called the 

mode number, and it is equal to 𝑚 +
1

2
 .  For example, for a medium with fixed end and free end, the 4th 

mode (with the 4th lowest frequency), has 𝑚 = 4 −
1

2
=

7

2
 , so it has hamonic number 𝑛 = 2𝑚 = 7 and a 

frequency 

 𝑓7 = 7𝑓1 =
7

2

𝑠

2𝐿
 . (181.5) 

If you have read Section 44b, then you may recall another situation calling for only odd harmonics: the 

partials of a square wave.  This is not to say that these standing waves somehow create a square wave.  The 

situations are quite different; recall that a “square wave” isn’t even really a wave.  But it is a nice point of 

similarity, perhaps useful in memorization. 

 

Figure 181.1 

For a specific length of the medium, frequencies of normal modes as multiples of 𝑠 2𝐿⁄ .  Numbers on the top scale are values 

for 𝑛 from Section 179b, and numbers on the bottom scale are values for 𝑚 and 𝑛 from Chapter 181. 
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Chapter 182. Other Normal Modes 

Very often free ends and fixed ends provide excellent models for real standing waves.  This book primarily 

focuses on those cases.  But examples where the ends of the medium are in between, partially constrained, 

are easy to find.  In such cases, any given medium still has normal modes, which are defined by the fact 

that they vibrate at specific frequencies. Those modes will exhibit nodes and/or antinodes (equally spaced, 

if there are multiple ones).  But the ends of the normal modes will be somewhere between a node and an 

antinode.  The frequencies may not exhibit the mathematical relationships described here. 

In fact, strictly speaking, medium ends are never perfectly free or fixed.  The ends of the medium containing 

the standing wave always contact something, and that contact can carry away some of the vibration energy.  

If you have read Chapter 149, this can be understood in terms of Figure 149.1.  Perfectly free or fixed 

boundaries, the far left and right edges of that figure, reflect 100% of any wave, and would contain the 

energy of a standing wave.  Conversely, if energy can leave the standing wave, that means that the 

boundaries not at the very edges of that figure, and thus are neither perfectly fixed nor perfectly free. 

It is not entirely clear how best to integrate these situations into Eqs. 179.1, 179.2, and 181.1.  When the 

deviations from fixed or free are small, it’s handy to think of the end of the standing wave (either a node or 

an antinode) as being slightly displaced from the physical end of the medium.  The length of this standing 

wave is then called the effective length of the medium.  But more generally, conditions at the ends of the 

medium are the reason that 𝑛 and 𝑚 can only take specific values.  From that perspective, it makes more 

sense to describe partially constrained ends by allowing 𝑛 to have different values.  The allowed values of 

𝑛 will always be discrete, spaced apart by approximately 1, but they need not be restricted to integers or 

half-integers. 

Chapter 183. Compression Standing Waves 

183a. 1D Standing Sound Waves 

A tube filled with a fluid, such as air, provides a way to have one-dimensional longitudinal standing waves.  

The two ends of the tube are the ends of the medium.  Each end could partially connect to the fluid outside 

of the tube, by having differently sized holes.  But in this chapter, we will consider only the extreme options: 

the end being capped off or closed, and the tube walls simply ending so that the end is open to the 

surrounding fluid.  The two end options give three options for the tube as a whole: an open tube has both 

ends open, a closed tube has one end closed and one open, and a doubly closed tube has both ends closed.  

The doubly closed tube is not encountered very often; since its interior is entirely separated from the 

exterior, it is not easy to use in a musical instrument. 

What sorts of standing waves can happen in these tubes?  How do they relate to the standing string waves 

in Chapters 179–181?  These waves can be considered either longitudinal or compression waves.  The two 

are synonymous, but the names imply a focus on different characteristics.  Either viewpoint is adequate to 

find the equations for the normal mode frequencies.  Comparing the two viewpoints gives a deeper 

understanding of the standing waves themselves. 

183b. Longitudinal Standing Waves 

The left and right ends of the tube cross sections in Figure 183.1 are closed and open respectively, forming 

a closed tube.  Focusing on the longitudinal displacements in the wave, at a closed end the displacement of 

the fluid is essentially fixed at zero.  If the fluid were to move away from the closed end, then a gap of 

nothingness would have to open up, which just doesn’t make sense.  The restoring force is too strong to 

allow that. 

At an open end, the displacement of the fluid is nearly free.  Remember that whether an end is free refers 

to influences other than the medium restoring force.  It’s true that if air just inside the open end is displaced 
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outward, then the resulting rarefaction in the tube will suck it back in.  But that fact doesn’t prevent this 

from being a free end, because that is the restoring force that causes the equilibrium state.  The open end is 

not perfectly free, because in order to displace that air outwards, it needs to push aside the air outside of the 

tube.  Nevertheless, the external air will flow around in response to very small density differences, 

especially compared to the internal air constrained by the tube walls.  So, it is quite a good model to consider 

an open end to enable free displacement. 

A closed tube end is a fixed displacement end. 

An open tube end is a free displacement end. 

Figure 183.1 shows the normal modes for a closed tube.  They correspond to the modes in Table 181.1.  In 

part (a), the displacements are represented in their actual direction at a selection of points throughout the 

tube.  Each arrow shows the maximum displacement for that parcel of air.  The black arrows show 

displacements that all occur at the time of an extreme of wave motion (notice that some are rightward and 

some are leftward), and the gray arrows show displacements that occur together at the opposite extreme.  

Clearly, this is not a very practical way to show these standing waves in any great detail. 

In Figure 183.1(b) the same modes are shown as graphs of longitudinal displacement versus equilibrium 

position.  These graphs exactly match the graphs in Table 181.1, but here the vertical axis has a different 

meaning.  Keep in mind, in particular, that these graphs do not represent something careening from side to 

side as it hurtles down the tube.  The vertical axis of the graph represents horizontal motion, and each curve 

(e.g., the black or the gray) represents a single moment in time, not a sequence of events. 

The same exact discussion from Chapter 181 applies here.  So Eqs. 181.1–181.3 apply.  A closed tube will 

have standing wave frequencies that are odd harmonics. 

183c. Compression with Different Ends 

The left and right ends of the tube cross sections in Figure 183.2 are closed and open respectively, forming 

a closed tube.  Focusing on the compression of the medium, at a closed end, since the interior of the tube is 

separated from the exterior, and the fluid is free to change density without influence from the outside.  The 

air can crowd up against the closed end, increasing its density, or stretch away from the end, decreasing its 

density. 

At an open end, the fluid is connected to the fluid outside the tube, and that outside fluid has some density 

that relatively fixed.  It is not perfectly fixed.  Sound can travel through the outside fluid, which varies its 

density.  But the fluid inside the tube is more able to vary its density because of the containing walls.  So it 

is quite a good model to consider an open end to be a fixed density end.  (If you have read Chapter 129, 

you might prefer to think of this as a fixed pressure end.) 

 

Figure 183.1 

Normal modes for longitudinal waves in closed tube.  (a) Cross sections of the tubes contain dots at equilibrium positions and 

arrows to show displacement from them.  (b) Displacement versus equilibrium position.  The black and gray, both 

displacement arrows and graphs, represent alternating extremes of the motion. 
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An open tube end is a fixed density (and pressure) end. 

A closed tube end is a free density (and pressure) end. 

Figure 183.2 shows the normal modes for a closed tube.  In part (a), the densities are represented by shades 

of gray, with darker indicating a denser state.  The upper rectangle in each picture shows the density at one 

extreme of the oscillation, and the lower rectangle shows the opposite extreme.  Although the pictures are 

fairly effective at conveying the variations, they are not very good for showing quantitative values and 

difficult to draw. 

In Figure 183.2(b) the same modes are shown as graphs of density versus position.  The open end is fixed 

and the closed end is free.  These graphs match the images in Table 181.1, except that the vertical axis has 

a different meaning and they have been reversed left-to-right.  Keep in mind, in particular, that these graphs 

do not represent something wiggling like a snake in the tube.  Each curve (e.g., the black or the gray) 

represents a single moment in time, not a path of motion. 

Reversing the graphs left-to-right does not change the conclusions from Chapter 181, so Eqs. 181.1–181.3 

apply.  A closed tube will have standing wave frequencies that are odd harmonics. 

If you have read Chapter 183, then you probably noticed that this chapter is very similar, but reversed.  The 

reversal is a direct consequence of the relationship between displacement and density in longitudinal waves 

seen in Chapter 124.  In that chapter the extremes of displacement occurred at the same locations as the 

zeros of density change, and vice versa.  In this chapter, the displacement antinodes occur at the density 

nodes, and vice versa. 

But because these are just two different ways to look at the same standing waves, the formulae for the 

frequencies are the same either way.  The closed tube has normal modes with the frequencies given by 

Eqs. 181.1–181.3 whether you consider the open end to be the free (displacement) end or the fixed (density) 

end.. 

183d. Extra: Compression with Similar Ends 

The standing wave shapes allowed by a 1D medium with two free ends are not shown in this book; they are 

left as an exercise for the reader.  But, notice that the case of a tube with two open ends can be considered 

as either having two fixed compression ends, or two free displacement ends.  Conversely, a doubly closed 

tube has those two perspectives reversed.  This implies, quite correctly, that the allowed frequencies are 

exactly the same whether both ends are fixed or both ends are free.  You may find it more useful to consider 

Eqs. 179.1 and 179.2 to be the “ends the same” case, while Eqs. 181.1–181.3 would be considered the “ends 

opposite” case. 

 

Figure 183.2 

Normal modes for compression waves in closed tube.  (a) Cross sections of tubes containing gray scale representing density, 

darker being denser.  Top and bottom panels represent alternating extremes.  (b) Density extremes versus position. 
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Chapter 184. End Correction 

Chapter 183 offers justifications for modeling an open tube end as either a free displacement end or a fixed 

density end.  However, it doesn’t take much experimentation to discover that this model is not quite good 

enough to tune tubes to specific frequencies.  A thought experiment about traveling waves can suggest the 

reason.  Imagine a compression pulse traveling down a tube towards an open end, as in Figure 148.1(c).  

When it reaches the end, it is easy to imagine that the compression will continue out into the external air a 

little way, before it expands and disperses.  This suggests that the true “end” of the medium containing the 

wave is actually somewhat outside of the open end. 

The physics required to resolve this question is quite advanced, but it confirms that the effective or acoustic 

length 𝐿𝑎 of an open pipe is slightly longer than its physical length 𝐿.  When accounting for this, it is the 

acoustic length that should be used in formulae, such as Eqs. 179.1 and 181.2.  The extra length, called the 

end correction 𝛥𝐿, can be defined for a closed tube by 

 𝐿𝑎 = 𝐿 + 𝛥𝐿 . (184.1) 

An open tube has the same situation at both ends, so the end correction must be added twice. 

For a tube of circular cross section that simply ends, as long as the standing wave wavelength λ is long 

enough compared to the tube radius 𝑟, the end correction is well approximated by60 

 𝛥𝐿 = 0.61𝑟 if 𝜆 > 8𝜋𝑟 . (184.2) 

If the wavelength is shorter than that, the length correction also gets smaller, to the point that if 𝜆 = 2𝑟, the 

length correction is about 𝛥𝐿 ≈ 0.3𝑟.  If the wavelength gets much shorter than that, it no longer even 

makes sense to consider the sound as a 1D wave. 

For a tube of a fixed physical length 𝐿, higher numbered modes will have shorter wavelengths.  The 

condition in Eq. 184.2 can therefore be expressed in terms of a maximum mode number as 

 𝛥𝐿 = 0.61𝑟 if mode number < 𝐿/4𝜋𝑟 . (184.3) 

This condition works for both open and closed tubes, although for a closed tube keep in mind that the mode 

number is different from the harmonic number.  Above this maximum mode number, the frequencies 

predicted from Chapters 179–181 will no longer follow their harmonic series.  Or to give a different 

interpretation, those equations are still accurate but the effective length is changing with mode number. 

Chapter 185. Energy in Standing Waves 

Standing waves may not transport energy, but they do contain mechanical energy, both potential and 

kinetic.  Exactly where that energy is situated is not the same as with traveling waves (see Chapter 142 and 

following), since the two wave types move differently. 

Potential energy depends only on the shape of the medium, not its motion.  So, the conclusions about one-

dimensional traveling waves in Chapter 143 apply equally well to standing waves: the potential energy is 

concentrated near the places where a snapshot of the medium displacement varies along the medium.  For 

sinusoidal standing waves this means that potential energy gets the biggest at the nodes of displacement. 

This is equally accurate for transverse and longitudinal waves.  But for longitudinal waves, it is probably 

easier to think of then as a compression waves.  The potential energy is then concentrated where the density 

change is furthest from zero.  For sinusoidal waves, this occurs at the antinodes of compression. 

 
60 Harold Levine and Julian Schwinger, “On the Radiation of Sound from an Unflanged Circular Pipe,” Physical 

Review 73(4) (1948): 383–406. 
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The total potential energy also changes through the cycle of motion.  Total potential energy is greatest when 

the sinusoidal standing wave is at extremes of disturbance, and potential energy drops to zero twice per 

cycle as the medium passes through its equilibrium state. 

Kinetic energy in standing waves is quite different from the traveling wave case.  Sinusoidal standing waves 

are less confusing than traveling waves.  Since displacement nodes never move, they never have kinetic 

energy.  Other points in the medium do move, with the maximum kinetic energy occurring at the 

displacement antinodes (which are the compression nodes).  The total kinetic energy also changes in time, 

very much like a mass on a spring.  It is greatest when the medium passes through its equilibrium state, 

when each piece of the medium achieves its greatest speed.  When the medium reaches extremes of motion, 

the kinetic energy drops to zero. 

The combined picture for sinusoidal standing waves is thus very similar to the case of a mass on a spring.  

The energy in the wave cycles between potential and kinetic forms, going through two such cycles for every 

period of the motion.  As it does so, it also sloshes back and forth between nodes and antinodes.  Which 

one corresponds to which type of energy depends on whether the wave is described with displacements or 

compressions. 

In the most general sense, this picture can be reconciled with the description in Chapter 177 of how a 

standing wave can be considered the result of the superposition of two countermoving traveling waves.  If 

each of those underlying traveling waves is transporting energy in opposite directions, then it makes sense 

that the net effect should be energy that is pretty much stationary.  But the details, such as the forms of that 

energy or the sloshing back and forth, can’t be discovered by considering only the energy of the interfering 

waves. 

Chapter 186. Standing Wave Superposition 

Chapters 179–182 describe the possible normal modes for sinusoidal standing waves.  Standing waves can 

have other shapes.  However, we will find that only sinusoidal standing waves can be described by a single 

shape that only varies in amplitude.  All other standing waves change shape as they vibrate.  The further 

one pursues this question, the less clear the distinction between standing and traveling waves becomes. 

How can we organize all possible standing wave shapes?  The situation is similar to that in Chapter 42, 

when considering all the possible complex vibrations.  And the same solution applies, a slightly modified 

version of Fourier’s theorem. 

Any standing wave can be built up by superposition from sinusoidal 
standing waves.  You never need more than one sinusoidal standing wave 
at each frequency (and wavelength).  In a medium with boundaries, such 
that the only allowed sinusoidal waves make a set of normal modes, any 
standing wave is a superposition of normal modes. 

When the normal mode frequencies are harmonically related, this means that the frequency of the combined 

standing wave must also be a harmonic of the fundamental mode frequency.  Except in relatively special 

combinations, the frequency of the combined standing wave will equal the fundamental.  To put that another 

way, if you make one of these 1D mediums vibrate, it will almost certainly vibrate at the fundamental 

frequency, even though higher harmonics may be involved in the vibration. 
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For a superposition of normal modes, it is 

their different frequencies that guarantee that 

the wave shape will change with time, more 

than just varying amplitude.  In fact, the result 

sometimes takes on characteristics of a 

traveling wave.  Figure 186.1(a) shows one 

example, made on a fixed-end string from the 

lowest three normal modes, with appropriate 

amplitudes.  The wave progresses from a solid 

curve through longer to shorter dashed curves, 

and then back again.  Even with only three 

components, this wave has a definite sense of 

a bump bouncing from end to end. 

Even an idealized pulse bouncing between the 

ends of a finite medium, as in Figure 186.1(b), 

can be built from the superposition of standing 

waves (although this example would take 

very, very many normal modes to produce).  

Is this still a standing wave?  In one sense, the 

wave energy never leaves the string, but on 

the other hand it is clearly moving back and 

forth.  The most important lesson here is that the boundary between standing waves and traveling waves is 

not as clear-cut as one might have expected. 

If we are willing to call even some of these standing waves, then nodes and antinodes are not necessary 

parts of standing waves.  Several of the snapshot lines in Figure 186.1(a) have points of zero displacement, 

but those are not nodes because they do not stay that way forever. 

This chapter highlights that when working in physics, it is sometimes possible to reach conclusions even 

when it is not feasible to fill in all intermediate details.  It would be very difficult to determine which normal 

modes with which amplitudes and phase constants would be required to build Figure 186.1(b) through 

superposition.  Also, that wouldn’t be a smart approach, since that wave is more easily understood as a 

reflecting traveling wave.  Nevertheless, Fourier’s theorem is so reliable that we know that it could be done, 

and with that knowledge comes some insight into the nature of standing waves. 

Chapter 187. 2D Standing Waves 

Standing waves can occur in 2D and 3D media as well as in 1D.  All that is needed is pairs of countermoving 

traveling waves.  In this chapter we will only look at some qualitative features of 2D standing waves that 

occur on thin plates and membranes, without worrying about the traveling waves that underlie them.  

Membrane refers to something like a drumhead — a thin flexible sheet that is stretched out to provide a 

restoring force towards a particular shape, usually flat. The restoring force is in some ways similar to that 

for a stretched string, and for the same reasons the edge of a stretched membrane is nearly always fixed in 

place.  The word plate in this context refers to a thin rigid material, so that the restoring force comes from 

the rigidity of the material itself.  Again, the common shape is close to flat, as for a cymbal or gong.  But 

the same general concepts also apply to other rigid shapes, such as a cup or bell, that a flat plate could 

deform into. 

Two-dimensional waves in all of these media are made from displacements of the medium in a direction 

perpendicular to the surface, so they are transverse waves.  As with 1D standing waves, these media have 

special standing waves, with the characteristic that they fill the medium so that all pieces are oscillating 

 

Figure 186.1 

Standing waves on a string fixed at both ends with traveling 

characteristics. (a) Example made from lowest three normal 

modes.  (b) A trapped wave pulse, which would require very many 

normal modes in superposition. 
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with the same frequency.  These are the normal 

modes.  These media can have more complicated 

standing waves as well, but those can be described as 

superpositions of multiple normal modes. 

However, the frequencies of these normal modes are 

not likely to be harmonically related, even for simply 

shaped objects.  This is the reason that musical 

instruments based on these shapes generally do not 

create a strong sense of pitch.  Those which do have a 

particular pitch either have one mode that dominates 

the others in amplitude, or they have been carefully 

shaped so that the frequencies of many of the modes 

are nearly harmonically related. 

Like 1D normal modes, there can be some positions 

on the plate or membrane where the vibration 

amplitude is zero.  But unlike in one dimension, this 

never occurs at only one isolated point.  Instead, there 

are nodal lines along the medium, with zero motion 

at every point on the line.  In the late 1700s, Ernst 

Chladni became famous for a technique to reveal these 

nodal lines on rigid plates, 61  illustrated in Figure 

187.1(a).  The plate is secured in a horizontal position, 

usually only at one point so that the rest of it can 

vibrate.  Then the plate is made to vibrate.  (In 

Chladni’s case, he drew a violin bow across the edge.)  

Fine sand sprinkled on the plate collects along the 

nodal lines.  The patterns formed can be quite 

intricate; an internet search will find numerous 

pictures and videos. 

In the regions between the nodal lines, there are places 

where the vibration amplitude is maximum.  These antinodes are nearly always points, not lines. 

The patterns formed by the nodal lines for any specific case are beyond the scope of this book.  However, 

there are some general rules satisfied by all normal modes which can be easily described. 

• The regions on either side of a nodal line, including the antinodes, vibrate out of phase with each other.  

when one region has a positive displacement, the other region has negative displacement, and vice versa. 

• As a consequence, nodal lines can’t end in the middle of the plate or membrane.  If one did, then the 

region in which it ended would have to be out of phase with itself, which is impossible.  The nodal lines 

either make complete loops, or they terminate at the edge of the medium. 

• Nodal lines can cross, and in fact there can be points from which many nodal lines radiate.  The number 

of lines radiating from such a point must be even, again because of the out-of-phase rule.  For example, 

four nodal lines extend from the center of Figure 187.1 (which you might equally well consider as two 

lines crossing in the center). 

These three rules mean that a nodal line pattern can be colored to show the phase of the regions.  In Figure 

187.1(b) all the gray regions are in phase with each other and out of phase with all the white regions.  Every 

nodal line has gray on one side and white on the other.  Notice that the edge of the plate is not marked with 

a solid line because it is not a nodal line. 

 
61 Ernst Chladni, Entdeckungen über die theorie des klanges, Leipzig: Weidmanns Erben und Reich, 1787. 

a) 

 

b) 

 

Figure 187.1 

Chladni pattern revealing nodal lines for one vibrational 

mode of a square plate.  (a) Reprinted from Elmar 

Bergeler,  Wikimedia Commons, 2011, 

https://commons.wikimedia.org/wiki/File:Chladni_patter

n_2.jpg (June 2015) / CC BY-SA 3.0.  (b) Schematic: 

lines are nodal lines, shading shows phase. 

https://commons.wikimedia.org/wiki/File:Chladni_pattern_2.jpg
https://commons.wikimedia.org/wiki/File:Chladni_pattern_2.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
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Three other rules for these patterns do not relate to the phase of vibration. 

• If the plate material is uniform, then the vibrating regions between the nodal lines will all be roughly 

the same size.  This is the 2D analog to the loop size rule in Section 179a, and has the same reasoning 

behind it. 

• Wherever the medium is held stationary, at least one nodal line must pass through that position.  Thus, 

the edge of a membrane (but not a plate) is a nodal line, similar to the ends of a 1D string.  The center 

of Figure 187.1(a) is fixed, and therefore on a nodal line (in fact, two for the mode shown).  The square 

plate in Figure 187.1 may have some vibrational modes for which the center is not on a nodal line, but 

they could not be demonstrated with that particular setup. 

• Wherever the medium is made to vibrate, by striking or otherwise disturbing, a nodal line cannot pass 

through that position.  In many modern demonstrations of Chladni patterns, the position where the plate 

is held is also the position that is vibrated.  That method does not force the nodal lines to pass through 

any particular position, but it does prevent them from certain positions.  For example, if the center point 

in Figure 187.1 were the source of vibration, it would not be possible to make the pattern shown in the 

figure. 

This last rule is often used to good advantage by percussion players.  By striking their instruments at 

different points, they excite different modes, and thus produce sounds with different timbres. 
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