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building, as things to be laid aside or got rid of as soon as finite lines were found
proportional to them. But then these finite exponents are found by the help of
fluxions. Whatever therefore is got by such exponents and proportions is to be
ascribed to fluxions: which must therefore be previously understood. And what
are these fluxions? The velocities of evanescent increments? And what are these
same evanescent increments? They are neither finite quantities, nor quantities
infinitely small, nor yet nothing. May we not call them the ghosts of departed
quantities??

13 MACLAURIN. ON SERIES AND EXTREMES

Berkeley’s criticism stung, and during the eighteenth century many attempts were made to
place the calculus on a rigorous foundation. For a report on these attempts, as far as Great
Britain is concerned, see K. Cajori’s works quoted in the introduetion to Selection V.12,
One of the most distinguished attempts was made by the Edinburgh professor Colin
Maclaurin (1698-1746) in his T'reatise of fluzions (Edinburgh, 1742). Maclaurin started, like
Barrow and Newton, from the concepts of space, time, and motion. But Maclaurin’s book
also contains other contributions. Best known is his introduction of Taylor’s series in a way
that has remained familiar in elementary textbooks. He gave the method for deciding
between a maximum and a minimum by investigating the sign of a higher derivative. Here
follow, in the original text, some of the articles of the Treatise that contain these contribu-
tions. Maclaurin also considered questions of convergence in series. See H. W. Turnbull,
Bi-centenary of the death of Colin Maclaurin (University Press, Aberdeen, 1951), also “Colin
Maclaurin,” American Mathematical Monthly 54 (1947), 318-322, and our Selection III.10,
note 3. ‘

751. The following theorem is likewise of great use in this doctrine. Suppose
that y is any quantity that can be expressed by a series of this form 4 + Bz
+ C2% + Dz® + &c. where 4, B, C, &c. represent invariable coefficients as
usual, any of which may be supposed to vanish. When z vanishes, let £ be the

value of y, and let E, , £, &ec. be then the respective values of ¥, 4, ¥, &o.

‘ _ B B2 Bz
z being supposed to flow uniformly. Theny = E + 2 T Tx22TTx2 <38

i 4
Bz yrring &c. the law of the continuation of which series is mani-

+1><2><3><

fest. For since y = A + Bz + C2? + D2z® + &ec. it follows that when z = o,

3 We may think here of the many arguments involved in the Zeno paradoxes, which also =
played & role in the. eighteenth-century discussions concerning the foundations of the

celculus; see Cajori, History of the conceptions of limits and fluwions, quoted in the 'mtrqdu_c’
tion to this selection, and his nine articles, ‘‘History of Zeno’s arguments on motion,
American Mathematical Monthly 22 (1915).
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4 is equal to y; but (by the supposition) & is then equal to y; consequently
4 = K. By taking the fluxions, and dividing by z,y = B 4 20z + 3D2% + &
5 .

. g, .. B .

and when z = o, B is equal to—z, » that is to 3 By taking the fluxions again, and

dividing by 2, (which is supposed invariable) % =204+ 6Dz + &c. Let z = o
3 H

and subs’mtutln'g E for g, 2= 2C,0rC = 5 By taking the fluxions again, and

dividing by 2, B = 6D + &c. and by supposing z = 0, wehave D = 6_12213 Thus

it appears that y = A4 + Bz + 022 + Ds® + &c. = E + % n B2
. N 2 1 x 222
Bz Bt . ¢
1 x 2 x 328 + T %2 x 3 % 4% + &c. This proposition may be likewise

deduced from the binomial theorem. Let BD [Fig. 1], the ordinate of the figure

+

Fig. 1

FDM. at B, be equal to B, BP = z, PM = ¥, and this series will serve for
resolving the value of PM, or y, (some particular cases being excepted, as when

any of the coefficients %, 3R &c. become infinite) into a series, not only in such

cases as were described in the preceding articles, but likewise when the relation
of y and z is determined by an affected equation, and in many cases when their
relation is determined by a fluxional equation. This theorem was given by Dr.
Taylor, method. increm. By supposing the fluxion of z to be represented by BP,

- E B I
orz—z,wehavey=E’+E+§+§+2—4+ &c. (as was observed in Art.

255)" and hence it appears at what rate the fluxion of y of each order contributes

to produce the increment or decrement of y,sincey — E = E + g + g + E
26 24

+ &c. If Bp be taken on the other side of B equal to BP, then pm = 4 — Ba

+ 022 — Dz® + &c. = (the same quantities being represented byl—.f:', é; , &c., as
2%

! Maclaurin’s book is divided into two parts. Book I is geometrical, Book IT is computa-

tional. Our selection is from Book II. Articles 255 and 261 i
: . to wh
with the same matter in a geometrical way. {t0 which bo refors below) deal
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Bz B2
before, or the base being supposed to flow the same way,) £ — = + 1< 22
B < fie
- : — &ec. tly PM m = 28 +
1><2><3z'3+1><2x3x42'4 &c. consequently +p
2K22 2kt
&e. ...
Tx28 " Txex3xa @ °°

Then, in Arts. 858-861, Maclaurin gives his criterion for maxima and minima.

858. When the first fluxion of the ordinate vanishes, if at the same time its
second fluxion is positive, the ordinate is then a minimum, but is a maximum if
its second fluxion is then negative; that is, it is less in the former, and greater in
the latter case than the ordinates from the adjoining parts of that branch of the
curve on either side. This follows from what was shewn at great length in
Chap. 9. B. 1, or may appear thus. Let the ordinate AF = K, AP = x[Fig. 2],

Fig. 2

? A P

and the base being supposed to flow uniformly, the ordinate PM = (Art. 751)

E+ El + 1—2%—: + %x_: + &o. Let Ap be taken on the other side of A equal to
% a % ‘

E Ba®  Ba®
AP, then the ordinate pm = B — ?x + LAY 7 Suppose now £ = o,

222 6x°
2 2
then PM = E %+ Eiv + gj—% &c. and pm = B =+ % — &ec. Therefore if the
x 2
distances A P and Ap be small enough, PM and pm will both exceed the ordinase

A Fwhen 1 is positive; but will be both less than A F if & be negative. But if #
vanish as well as B, and B does not vanish, one of the adjoining ordinates PM
or pm shall be greater than AF, and the other less than it; so that in this case
the ordinate is neither a maximum nor minimum. We always suppose the
expression of the ordinate to be positive.

859. In general, if the first fluxion of the ordinate, with its fluxions of several
subsequent orders, vanish, the ordinate is a minimum or mazimum, when the
number of all those fluxions that vanish is 1, 3, 5, or any odd number. The

ordinate is a minimum, when the fluxion next to those that vanish is positive;
but a mazimum when this fluxion is negative. This appears from Art. 261, or by.
comparing the values of PM and pm in the last article. But if the number of alli—
the fluxions of the ordinate of the first and subsequent successive orders that;
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vanish be an even number, the ordinate is then neither a maximum nor minimum.

860. When the fluxion of the ordinate y is supposed equal to nothing, and an
equation is thence derived for determining z, if the roots of this equation are all
unequal, each gives a value of 2 that may correspond to a greatest or least
ordinate. But if two, or any even number of these roots be equal, the ordinate
that corresponds to them is neither a maximum nor minimum. If an odd num-
ber of these roots be equal, there is one maaimum or minimum that corresponds

to these roots, and one only. Thus if g = 2* + ax® + ba? + cx + d, then sup-

posing all the roots of the equation #* 4 aa2® + bx? + cx + d = 0 to be real, if
the four roots are equal there is no ordinate that is a maximum or minimum; if
two or three of the roots only are equal, there are two ordinates that are
maxima or minima; and if all the roots are unequal there are four such ordinates.

861. To give a few examples of the most simple cases. Let y = a%x — «®, then

¥ = a*¢ —3x*tand §j = —6x42 Suppose = 0,and 32% = aZorz = %, in which
case j = — Ba? fherefore i/ being negative, y is a maximum when ¢ = 2
V3 ’ V3’

3 .
and its greatest value is %‘0/—?_). If y = aa + 2bx — ax, then § = 2b2 — 224, and
§j = —2a% consequently y is a mazimum when 20 — 2x =0, or z = b. If

Y = aa — 2bx + xx then y = —2b2 + 2a4, and § = 2#2; consequently y is
now a minimum when x = b, if @ be greater than b.

Maclaurin also considers the cases in which 4, #, ¢, . . . vanish.

14 D’ALEMBERT. ON LIMITS

Among the mathematicians who seriously tried to come to an understanding of the founda.-
tions of the caleulus (the “metaphysics of the calculus’) was Jean LeRond D’Alembert
(1717-1783), long the secrétaire perpétuel of the French Academy and with Denis Diderot
- the leading spirit of the famous Encyclopédie ou dictionnaire raisonné des sciences, des arts
t des métiers (28 vols.; Paris, 1751-1772). In this Encyclopédie D’ Alembert, wrote a number
of articles,’ and in the article entitled ““ Différentiel” (vol. 4, 1754) he came to the expression
of the derivative as the limit of a quotient of increments, that is, of what we now write
dylde = lim Ay/Az, Az — 0 (already, though not in a very clear way, expressed by Newton).
This leading idea, however, was not followed up immediately, either by D’Alembert himself
or by others. One of the difficulties that prevented acceptance of the limit concept in this
0886 was of the same nature as the Zeno paradoxes: how can a limit be reached if the process
coming to it consists of an infinite number of steps? Only with Cauchy in the early

! For an account of several of them see G. Loria in the Actes . . . du 3° congrés international
d’histoire des sciences, tenu au Portugal en 1934 (Lisbon, 1935), 15 Pp.




