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the 19th century. Today he is probably
best known not for his work on the
calculus of variations, the theory of
numbers, or algebra, but for his
search for sound foundations for the
calculus. In his Theory of Analytical
Functions (1797), which contained his
lectures given at the Ecole Polytech-
nique, he attempted to demonstrate
that Taylor's power series expansions

sought after satisfactory foundations
for the calculus. In a supplementary
article entitled “Lessons on the Cal-
culus of Functions” (1801), he intro-
duced a new symbolism for first de-
rivative ', for second derivative ', and
so on. In the 19th century, Ampeére,
Cauchy, Weierstrass, and others suc-
cessfully extended his search for
sound foundations.

alone were sufficient to provide the

86. From “Attempt at a New Method for
Determining the Maxima and Minima of
Indefinite Integral Formulas” (1760-61)*

(The Calculus of Variations)

JOSEPH-LOUIS LAGRANGE

The first problem of this kind sofved by the geometers is that of the Brachysto-
chrone, or line of most rapid descent, which Mr. Jean Bernoulli proposed toward
the end of the last century. It was solved only for particular cases, and it was not
until some time later, on the occasion of the investigations on [soperimetrics, that
the great geometer whom we mentioned and his illustrious brother Mr. Jacques
Bernoulli gave some general rules for solving several other problems of the same
kind. But since these rules were not general enough, all these investigations were
reduced by the famous Mr. Euler to a general method, in a work entitled Methodus
inveniendi . .., an original work which everywhere radiates a deep knowledge of
the calculus. But, however ingenious and fertile his method may be, we must rec-
ognize that it does not have all the simplicity that might be desired in a subject of
pure analysis. The author has made us aware of this in Article 39 of Chapter Il of his
book, by the words, “A method iree from a geometric solution is therefore required

Now here is a method that demands only a very simple application of the princi-
ples of the differential and integral calculus, but first of all | must warn you that,
since this method demands that the same quantities vary in two different manners, |
have, in order not to confuse these variations, introduced into my calculations a
new characteristic 8. Thus 8Z will express a difference of Z that will not be the
same as dZ, but that nevertheless, will be formed by means of the same rules; so

*Source: The French original of this paper, “Essai d’une nouvelle méthode pour déterminer
les maxima et les minima des formules intégrales indéfinies,” is in the Oeuvres des Lagrange, |
(1867), 355-362. This English translation of parts of it is taken from D. ). Struik (ed.), A Source
Book in Mathematics, 1200-1800 (1969), 407-410 and 412-413. It is reprinted by permission
of Harvard University Press, Copyright © 1969 by the President and Fellows of Harvard
College.
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that when we have an equation dZ = m dx we might just as well have 87 = méx
and cher expressions in the same way. . /
This being settled, | come first to the following problem.

A P_rob/em . Given an indefinite integral expression represented by f Z, where Z
Inc.i‘|c/ates a given arbitrary function of the variables x, y, z and their differentials
[ifférences] dx, dy, dz, d, d%, d%, ..., to find the relation among these vari-
ables so that the formula | Z become a maximum or a minimum.

So_/u[ion. According to the known method de maximis et minimis we shall have
to differentiate the proposed [ 7, and, regarding the quantities x v, 2 dx, dy, dz
d*, d¥, d%z, . .. as variables, make the resulting differential [différentie/le]/equ/al t<;
zero. When, therefore, we indicate these variations by 8, we shall have first, for the
equation of the maximum or minimum, -

8 [dz =o,
or, what is equivalent to it,

d [ & =o.
Now, let Z be such that

82 =nd +pddx +qgddx +r8dx + - -
+ N8y + P8dy + Q8dy + Rédy + - - -
+vdz + w8 dz + xddz + p&diz + - -

then we obtain from it the equation

[ néx + [ psdx + [ g8 dx +[rsdx + -
+ [ Noy + [Psdy + [ Qsdy + [ REdy + - - -
+Jvdz + [ wsdx + [ xdd%z + [ p5diz + -

but it is easily understood that

I
&

Sdx =déx, 8dix = dx,

andt the others in the same way:; moreover, we find by the method of integration by
parts,

[ p déx = péx - [ dpéx,
fq d*8x = q déx — dgdx + f dqéx,
fr d*®x = r 8 — dr déx + duéx — f d3z8x,
and the others in a similar way. The i i i
_ . preceding equation will
i 1S g eq ill therefore be changed
Jin —dp + dig — dor + - - jex
+[(N = dP + d?Q — dR + - - )3y
+f(v~d7'r+d1x—d3p+ C )8z

Tp=dg+dr = 96+ (g —dr+ - )déx
A = e+
FP—dQ+ d*R = - by +(Q ~ dR + - - )dsy
+(R= )8y + - -
tr—dx+dp - )8z +(x—dp+ - )dsz

o — Bz 4+ =1
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from which we obtain first the indefinite equation

(n —dp +dqg —d + - )8
(B +(N—dP +dQ —dR+ )8y —
+(w—dmr+dx —dp+ )8z =0,

and then the determinate equation

(p—dp+dur— - )x+(q—dr+ - Jddx+(r— )+ -
© +(P—-dQ+dR— - )3y +(Q—dR+ - )ddy +(R— " )%y + - - -
+(m—dx+dp— )zt (x—dp+ - )déz+(p— - )d¥z+ - =0

This equation refers to the last part of the integral [ Z; but we must observe that,
since each of its terms, such as pdx, depends on an integration by parts of the
formulaf p ddx, we may add to or subtract from it a constant quantity. The condi-
tion by which this constant must be determined is that pdx must vanish at the point
where the integral f p ddx begins; we must therefore take away from pdx its value
at this point. From this we obtain the following rule. Let us express the first part of
equation (C) generally by M, and let the value of M at the point where the integral [
Z begins be indicated by 'M, and at the point where this integral ends, by M’; then
we have M’ — 'M = 0 for the complete expression of equation (C). Now, in order to
free the equations obtained from the undetermined differentials 8x, 8y, 8z, déx, ddy,

., we must first examine whether, by the nature of the problem, there exists
some given relation among them, and then, having reduced them to the smallest
number possible, we must equate to zero the coefficient of each of those that re-
main. If they are absolutely independent of each other, then equation (B) will give
us immediately the three following:

n—dp+dqg-—-dr+ -
N—=dP +dQ -dR+ - =
v—dr +dix—dp+ -

co@

[Next follows the example
r-\/dx2 + dy? + dx?
J Vi '

which is the brachystochrone in empty space and leads (a) to the result that the

curve is plane, and (b) to dt = Vx dx/Vc — x. The case of the brachystochrone on
a surface is also discussed; here the relation 8z = pdx + g8y has to be taken into
consideration. Lagrange takes the cases in which the end points are fixed, as well as
those in which they are subjected to certain other conditions. This, says Lagrange,
makes his method more general than that of Euler, since Euler keeps the end points
fixed; moreover, he lets only y vary in Z. . . ]

Problem Ill. To find the equation of the maximum or the minimum of the formula
f Z, if Z is simply given by a differential equation that does not contain other
differentials of Z than the first,

[ This is the case in which we can write

d8dZ +T8Z =ndx + pSdx + - - - + Noy + PSdy + - - - + vdz + wd dz,
which is then solved as a linear differential equation in 87, taking & dZ = d8Z.

There are two appendices. In the first we find (a) the problem of the surface of
least area among all surfaces with the same given perimeter:
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8§ [ [ dx dyV1 +p? 1 g2 =0, P =(r-j;). i -(rh).
il tly
. D dy — o}
which leads to the condition that both p dx + g dy and Falld o R have to be
V. p2refe g2

exact differentials," and (b) the problem of the surface of least area among all sur-
faces of equal volume:

8<ffzdxdy>=0, 6<ffdxdy\/1—+p_2+qi)=0,

Py 8 I i &
V1 + p? + q?
an arbitrary coefficient) must be exact differentials. This is verified for the sphere.
In the secand appendix we find the problem of the polygon of largest area amang
all polygons of the same given number of sides. It is shown that this polygon is
inscribed in a circle, a theorem proved geometrically by Cramer (Histoire de
I"’Académie Royale, Berlin, 1752). If only the sum of the sides is given, the polygon
is regular.
Lagrange’s paper was followed in the same number of the Miscellanea Taurinen-
sis, pp. 196-298, by a longer one: "Application de différents probléemes de
dynamique” (Oeuvres, |, 365-468).]

which leads to the condition that both p dx + ¢ dy and

NOTE

1. Two examples of these “minimal surfaces,” the catenoid and the right helicoid, were
found by Jean-Baptiste Meusnier, a pupil of Monge’s, in the Mémoires des savants étrangers
de I"Académie 10 (Paris, 1785). He also interpreted here Lagrange’s analytic condition
geametrically as indicating that the mean curvature is zere; The catenoid had already ap-
peared in chap. V, 44 of Euler's Methedus Jnveniendi, but net as a minimal surface



