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variable quantity a quantity composed in some way or other of this variable quantity and
constants” (Opera ommnia, 11, 241). In this paper Bernoulli then used the term ‘‘function”
quite freely in enunciating his theorems. Euler took it over and in a paper in Commentari
Academiae Scientiarum Petropolitanae 7, 1734-35 (1740), 184-200 (Opera omnia, ser. I,

vol. 22, 57-75) introduced the notation. f (2 + c) for “an arbitrary function of g +¢”In

Chapter I of his Introductio of 1748 (see Selection V.15) Euler repeated Bernoulli’s state- ;
ment, adding the word “analytic,” and continued, ““Therefore every analytic expression
in which apart from a variable quantity z all quantities that compose this expression are
constants is a function of this z, such as a + 3z, az — 422, az + baa — 2z — c?, ete.”

Euler then classified functions, using the terms “algebraic” and ‘transcendental,”
“single-valued” and ‘“‘multiple-valued.” In the second volume of the Introductio he dis-
cussed curved lines, and wrote (Chapter I):

“A continuous curve is of such a nature that it can be expressed by one definite function
of x. But if a curved line is of such a nature that various parts of it, BM, M D, DN, etc.,
are expressed by various functions of x such that, after the part BM has been defined with
the aid of one function, the part M D is described by another function, then we call such
curved lines discontinuous or mixed and irregular, because they are not formed according
to one constant law and are composed of parts of various continuous curves.”

In his Institutiones calculi differentialis (Saint Petersburg, 1755), Euler returned to these
statements in the Introductio and then showed how to differentiate these functions. It is
clear, therefore, that in Euler’s opinion (and in that of his contemporaries and pupils), a
function was a relation to be expressed by some analytical expression, as a polynomial, a
sine, a logarithm, or even an integral of such expressions.

It was the exchange of opinions among Euler and some of his colleagues due to the
vibrating-string discussion that brought about a certain feeling of disturbance among those
who used the concept of fiunction in this way. As we have seen in Selection V.16, Taylor had
shown that there are sinusoidal solutions. D’Alembert found the solution in the form
z = f(at + z) + f(at — «), with f(z) an “arbitrary function,” but was not sure that this
“analytic way,” as he called it, of expressing a solution was sufficient to describe all forms
of the string in motion; in other words, he was not sure whether any continuous curve could
be given by an expression y = f(z). Euler thought that this could be done. But Daniel
Bernoulli derived the solution in the form of an infinite trigonometric series and gave it as
his opinion that this combination of ““Taylorian” functions could give the general solution,
something Euler doubted. Euler’s conclusion was (Selection V.16(5)) that his trigometric
solution was only a particular solution of the formula which in general contains all the
curves that the string in motion can assume, and there are an infinity of other curves
that cannot be expressed by this equation.

For Euler, “arbitrary functions” were able to represent all ““curves of the string” and
conversely, Later (1759) Lagrange argued that an arbitrary function in great general-
ity can be expressed by a trigonometric series. On Lagrange’s definition of function see
Selection V.19.

As we have said, the concept of function was clarified in the nineteenth century by the..
work of Fourier, Cauchy, Dirichlet, and Riemann; see, for example, P. E. B. Jourdain;::
“The origins of Cauchy’s conceptions of a definite integral and of the continuity of
function,” Isis 1 (1913), 661-703; A. Pringsheim in Encyklopidie der mathematische

Wissenschaften (Teubner, Leipzig), 1T (1899), 1-53.
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By 1.750 the number = had been expressed by infinite series, infinite products, and i fini
continued fractions, its value had been computed by infinite series to 127 place,s of dm‘ e
(see Selection V.15), and it had been given its present symbol. All these efforts. h o
had not contributed to the solution of the ancient problem of the quadrature of ,bhz W'W(;rj
th'e question whether a circle whose area is equal to that of a given square can be constrclr: 4
with the sole use of straightedge and compass remained unanswered. It was Euler’ucd'ed
covery of the relation between trigonometric and exponential functions that eventualf 113
to an answer. The first step was made by J. H. Lambert, when, in 17661767, he used E }1 e’
work to prove the irrationality not only of , but also of e. 2 e
Johann Heinrich Lambert (1728-1777) was a Swiss from Miilhausen (then in Switz
land). Called to Berlin by Frederick the Great, he became a member of the Berlin Acadezflr-
and .thus a colleague of Euler and Lagrange. His name is also connected with the introy
duction of hyperbolic functions (1770), with perspective (1759, 1774), and with the so-call d
Lambert projection in cartography (1772). A ’ i
'Lambe'rt published his proof of the irrationality of = in his “Vorldufige Kenntnisse fiir
die, so dle. Quadratur und Rectification des Circuls suchen,” Beytrige zum Gebrauche der
Maﬂ.zefnatzlc und deren Anwendung 2 (Berlin, 1770), 140-169, written in 1766. and in more
d.etall in the “Mémoire sur quelques propriétés remarquables des quantités t;anscendentes
circulaires et logarithmiques,” Histoire de U Académie, Berlin, 1761 (1768), 265-322, pre
se.l‘lte(.i in 1767. They have been reprinted in the Opera mathematica, ed. A. épeiser (2 ,v}))ls
Fiissli, Zurich, 1946, 1948), I, 194212, 11, 112-159. The following text is a translation fI'OI;],
Ppp. 132-138 of vol. IT. Lambert writes tang where we write tan. Ses also F. Rudio, Archi-

medes, Huygens, Lambert, Legendre. Vier Abhandl i . .
Leipzig, 1892). ungen iiber die Kreismessung (Teubner,

3?. Now I say that this tangent [tan g/w] will never be commensurable to the
radius, whatever the integers w, @ may be.

! In the previous sections Lambert ex: i
) 0 pands tan v, v an arbitrary arc i i
into & continued fraction, and gets for v = 1 jw ' ¥ are of a.circlo of radius 1,

tanv =
1
e 1
Bw — ——
A 5w — 1 ete.
Investigating the partial fractions and their residues, he finds infinite series like
tanv = l + ! !

" wE — Dt B - s — 6w T

and shows (in §34) that these series converge more rapidly than any decreasing geometric

series. Then, if w = w:p, w bein, lati i i i
fonctions oF tom 4 (336, P w, @ g relatively prime integers, he finds for the partial

[ Bwe 16w?p — o8 105089 — 10we®

o 3w — ¢ T5e® — 60w’ 105wt — 45w?g? + g7 ete.,

and (§37):
tan ¥ - 2 il + ¢°
® o 08w’ — ¢%  (3uw? — ¢%)(16wd — 6w2p)

Then follows the text which we reproduce.

+ ete,




e
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38. To prove this theorem, let us write

tan 2
w

= e

P

such that M and P are quantities expressed in an arbitrary way, even, if you
like, by decimal sequences, which always can happen, even when M, P are
integers, because we have only to multiply each of them by an irrational
quantity. We can also, if we like, write

M=sn?, P=cos?
w w

as above. And it is clear that, even if tan ¢/w were rational, this would not
necessarily hold for sin ¢/w and cos pjw.

39. Since the fraction M|P exactly expresses the tangent of p/w, it must give
all the quotients w, 3w, 5w, ete., which in the present case are

3w bw Tw
) —_—— + — — — ete.
'4

w
+ =
¢ ' P

40. Hence, if the tangent of ¢/w is rational, then clearly M will be to P as an
integer y is to an integer m, such that, if u, 7 are relatively prime, we shall have

M:p=P:n =D,
and D will be the greatest common divisor of M, P. And since reciprocally
M:D=p, P:D=m

we see that, since M, P are supposed to be irrational quantities, their greatest
common divisor will be equally an irrational quantity, which is the smaller, the
larger the quotients u,  are.

41. Here are therefore the two suppositions of which we must show the incom-
patibility. Let us first divide P by M, and the quotient must be w :¢. But since
w ¢ is a fraction, let us divide P by M, and the quotient » will be the ¢-tuple
of w :g. It is clear that we could divide it by ¢ if we wished to do so. This is not
necessary, since it will be sufficient that w be an integer. Having thus.obtained
w by dividing P by M, let the residue be R’. This residue will equally be the
p-tuple of what it would have been, and that we have to keep in mind. Now,
since P:D = =, an integer, we still have ¢P:D = ¢w, an integer. Finally,
R': D will also be an integer. Indeed, since

¢oP = oM + R/,
we shall have

gP _oM R

D D D

e
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But 9P :D = om, oM : D = wp; hence

which gives

B .
DT e = integer,

which we shall call #*, so that B’/D = #'. The residue of the first division will
therefore still have the divisor D, the greatest common divisor of M, P.

42. Now let us pass to the second division. The residue R’ being the @-tuple
of what it would have been if we had divided P instead of P, we must take this
into account by the second division, where we divide M, instead of M, by R’
in order to obtain the second quotient, which = 8w :p. However, in order to
avoid the fractional quotient here also, let us divide 92M by R’, in order to have
the quotient 3w, an integer. Let the residue be R”, and we shall have

o*M = 3wR' + R”;
hence, di‘vidjng by D,

M 3wR R"

- &
D D D
But
M
el ¢®m = integer,
3%?— = 3wr’ = integer;
hence

7 :i
’m = Jwr’ + = :
@ 3wr’ + D

which gives R’/D = ¢®>m ~ 3wr’ = an integer number, which we shall write i
= 1", g0 that

"

R’
_=Tr,

D

Hence the greatest common divisor of M, P, R’ is still of the second residue R”. |

43. Let the next residues be R”, RY,..., R, R**, R**2 ... which corre-
spond to the g-tuple quotients 5w, 7w, ..., (21 — 1)w, 2n + o, (27 + 3)w,
..., and we have to prove in general that if two arbitrary residues B", R"+1 in
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immediate succession, still have D as divisor, the next residue R**2 will have
it too, so that, if we write

R :D =1,

Rn+1:D = rn+1’
where 7" and 7+ are integers, we shall also have
+2.D —
R D= ’I‘"+2,

an integer. This is the demonstration.

We omit this proof in §44, since the reasoning follows that of §42.

45. Now we have seen that ¢/, 7" are integers (§§41, 42), hence also #”,
MY, ..., 1™, ... to infinity will be integers. Hence any one of the residues E’,
R", R”,..., R*, ... to infinity will have D as common divisor. Let us now find
the value of these residues expressed in M, P.

46. Every division provides us with an equation for this purpose, since we
have

R = ¢P — wM,
R’ = ¢?M — 3wR’,
R" = ¢*R’ — 5wR", ete.
But let us observe that in the existing case the quotients w, 3w, bw, ete. are

alternately positive and negative and that the signs of the residues succeed each
other in the order — — + 4. These equations can therefore be changed into

R = oM — ¢P,
R" = 3wR' — ¢?M,
R" = 5wR" — ¢?R’,

or in general
Rrt2 = (2n —_ 1)Rn+1 — gszn.
From this we see that every residue is related to the two preceding in the sam¢

way as the numerators and denominators of the fractions that approximate the
value of tan p/w (§36). ;

§
I
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47. Let us make the substitutions indicated by these equations in order to
express all these residues by M, P. We shall have

B = oM — (PP:
R’ = (3w? — ¢® )M — 3wepP,
R" = (150® — 6wp?) M — (15029 — @) P, ete.

And since these coefficients of M, P are the denominators and numerators of the
fractions we found above for tan g/w (§36), we see also that we shall have

¥ _ o F
P o P
ll_{ _ 3w<P _ RI/
P 30— ¢ (3w® — ¢?)P’
V]—u_ B 15(02(]) — <P3 _ Rlll
P 15w® — Bwgp® (163 — 6we?)P’ oto.
48. But we have
% = tang;
hence (§§37, 34)
M [ _ (pa <P5
P o wBw?-—¢?) + (Bw? — ¢?)(15w? — Bwe?) + ete.,
M Swp ¢°
P 307 — g7 (30 — ¢9)(16w® — Bag?) + ete.;
hence
R’ (pa 5
= _ 4
wP ~ wBe? — ¢%) | Ba? = pN(Iba? — Buwg?) T OO
R _ P
(8w? — AP~ (3w? — ) (16w® ~ 6w}<p2) + ete.,
R” 7

= '
(16" = Bwp?)P ~ {IB® — Bug?)(1060" — Baie? + ¢5) T 0

Thus all the residues can be found by means of the sequence of differences ( §3'§)

__ 9 P° @°
=== 4
0 w ? — ¢%) + (Bew? — ¢?)(15w® — 6we?)

7

P
+
(15w® — 6ag?)(1060* — 4Batg? + o8 T o
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by omitting 1, 2, 3, 4, ete. of the first terms and multiplying the sum of the
following terms by the first factor of the denominator of the first term that is
retained and by P.

49. Now, this sequence of differences is more convergent than a decreasing
geometric progression (§§34, 35). Hence the residues R’, R”, R”, etc. decrease
in such a way that they become smaller than any assignable quantity. And as
every one of these residues, having D as common divisor, is a multiple of D, it
follows that this common divisor D is smaller than any assignable quantity,
which makes D = 0. Consequently M : P is a quantity incommensurable with
unity, hence irrational.

50. Hence every time that a circular arc = pjw is commensurable with the radius
= 1, hence rational, the tangent of this arc will be a quantity incommensurable with
the radius, hence irrational. And conversely, every rational tangent is the tangent
of an irrational arc.

51. Now, since the tangent of 45° is rational, and equal to the radius, the arc
of 45°, and hence also the arc of 90°, 180°, 360°, is' incommensurable with the
radius. Hence the circumference of the circle does mot stand to the diameter as an
integer to an integer. Thus we have here this theorem in the form of a corollary
to another theorem that is infinitely more universal.

52. Indeed, it is precisely this absolute universality that may well surprise us.

Lambert then goes on to draw consequences from his theorem concerning arcs with
rational values of the tangent. Then he draws an analogy between hyperbolic and trigono-
metric functions and proves from the continued fraction for ¢* + 1 that e and all its powers
with integral exponents are irrational, and that all rational numbers have irrational natural
logarithms. He ends with the sweeping conjecture that “no circular or logarithmic trans-
cendental quantity into which no other transcendental quantity enters can be expressed
by any irrational radical quantity,” where by “radical quantity’ he means one that is

expressible by such numbers as V2, V3, V4, \/2 + V'3, and so forth. Lambert does not
prove this; if he had, he would have solved the problem of the quadrature of the circle. The
proof of Lambert’s conjecture had to wait for the work of C. Hermite (1873), and F. Linde-
mann (1882). See; for instance, H. Weber and J. Wellstein, Encyklopddie der Elementar-
Mathematik (3rd ed.; Teubner, Leipzig, 1909), I, 478-492; G. Hessenberg, Transzendenz
von ¢ und « (Teubner, Leipzig, Berlin, 1912); U. G. Mitchell and M. Strain, “ The number e,”
Osiris 1 (1936), 476—496.

18 FAGNANO AND EULER. ADDITION THEOREM OF ELLIPTIC
INTEGRALS

Count Giulio Carlo de"Toschi di Fagnano (1682-1766), Spanish consul in his home town Of"
Sinigaglia (Italy) and an amateur mathematician, published in the Giornali de’lettera:tz
d’Italia for the years 1714-1718 a series of papers on the summation of the aros of certain
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ourves, a problem induced by a paper of Johann Bernoulli’s of

ed b, 1698.1 These papers of
Fagnano are reproduced in his Opere mathematiche (2 vols.; Albrighi, Segati & C(E). %ﬁfaz
Rome, Naples), IT (1911), from which our selection has been translated. In vol. 1.;) of the,

Giornali Fagnano posed the following problem (Opere, 11, 271):

Pro.blem:1 Let a biquadratic primary parabola, which has as its constituent !
equation #* = y, and also a portion of it, be given. We ask that another portion |

of the same i . !
rectifiable, curve be assigned such that the difference of the two portions be j

. It had already been recognized by the brothers Bernoulli that what would be called elli
t{c arcs are not rectifiable, but that sums or differences might be representable by arcs Ef
circles or straight lines. Fagnano gave a solution of his own problem, and generali)z’ed it to
& number of cases, all involving-elliptic integrals. One of his conclusions sometimes called
Fagnano’s theorem, dates from 1716 and is found in the paper entitled “’Teorema, da cui si
deduce una nuova misurs, degli archi elittici, iperbolici, e cicloidali,” Qiornali 26 {Opere, 1T

287-292),
Theorem. In the two polynomials below, X and Z, and in equation (1) the
letters h,'l, [, g represent arbitrary constant quantities.
I. say, in 'the first place, that if in equation (1) the exponent s expresses the
positive unity [s = +1], then the integral of the polynomial X — Z ig equal
to —haz/vV —fl.
I say, in the second place, that if in the same equation (1) the exponent s |
expresses the negative unity [s = —1], then the integral of ‘
X 4 7 =Y —h
vy
Here
X - deVha? {1
ViE g
7 - dzVha? 4]
Vid+yg
1) (FRa®2%) + (fla®) + (fl22)¢ + (gly = o

! An account of the contributions of Fa; i
t gnano to this problem can be found in Cant
Get?chwhte, III.(2nd.. et'i.,' 1901), 465-472. Johann Bernoulli’s paper, entitled “Theoxl'ler(:;
universale rectificationi linearum curvarum inserviens” (Universal theorem useful for the

rectification of ¢ d 1i : N
I, 249-253); urved lines), appeared in the Acta Bruditorum of October 1698 (Opera omnia,




