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Hamilton's colleagues knew him as
a genial man of exceptional intellect
and-broad scholarly interests. His
candid disposition, good sense of
humor, and eloquence appealed to
many. His lectures attracted large au-
diences because of their literary merit,
but his poetry was so poor that
Wordsworth, who was a friend, urged
him to confine himself to writing
mathematics! Hamilton was fond of
reading Plato and Kant Coleridge
had introduced him to Kant's writings,
which in turn led him toward phifo-
sophical idealism. In the theory of
matter he accepted the point-atomism
of the Yugoslav scientist Rudjer Bos-
covic.

Hamilton devoted much time and
energy to building scientific organiza-
tions. After joining the Royal Irish
Academy in 1835, he served as its
president from 1837 to 1845. The chief
organizer in Dublin of the British As-
sociation for the Advancement of Sci-
ence, he brought its annual meeting
there in 1835. He was knighted at that
meeting, and the Royal Society twice
awarded him the Royal (Gold) Medal
for his optical and dynamical re-
search. The St Petersburg Academy
of Science named him a correspond-
ing member, and the newly-founded
National Academy of Sciences in the
United States placed him at the head
of 14 foreign associates in 1863.

In his personal, domestic life Hamil-
ton was not fortunate. Catherine Dis-
ney, whom he always loved, refused
his proposal of marriage in 1825; so
did Ellen DeVere in 1831. In 1833, he
married Helen Bayly, who suffered
from continued ill health, and they had
two sons and a daughter. The sickly
Helen ran a poor household; Hamilton
rarely had regular meals. In 1853,
when Catherine Disney neared death,
he grew despondent. In his later years
he struggled against alcoholism.

Hamilton contributed significantly to
optics, dynamics, and, most of all, the

algebra of quaternions. He first devel-
oped fundamental ideas in geometri-
cal optics by employing the charac-
teristic function, which involves the
action of a system moving from its ini-
tial to its final point in space. He re-
lied particularly on Fermat's principle
of least time. Seeking the greatest
generality, he extended the approach
in 1833 and 1834 to provide a general
method of dynamics. His general
method not only unified optics and
dynamic$ but also reduced dynamics
to problems in the calculus of varia-
tions. His research included a de-
tailed study of the three-body problem
in astronomy. His new method was not
fully appreciated for many years
largely because of the novel, abstract,
and obscure nature of his writings.
The Hamiltonian method came into its
own only with the rise of quantum
mechanics. ]
Hamilton's landmark discovery of
quaternions came in 1843. They are
ordered sets of four ordinary numbers
satisfying special laws of addition,
multiplication, and equality but free-
ing algebra from the commutative law
of multiplication (i.e, a X b =b xa).
The discovery followed a decade of
patient and systematic research on
algebra. Inspired by Kant's Critique of
Pure Reason, Hamilton considered
geometry to be the “science ‘of pure
space” and algebra to be based on
the intuition of mathematical time. In a
pioneer attempt to develop an axioma-
tic basis for algebra comparable to
that of geometry, he developed a
rigorous theory for complex numbers
(i.e., numbers of the forma + bi where

i is V—=1). This allowed him to handle

the two dimensional plane but not
three-dimensional space. After exam-
ining triplets, he suddenly realized,
while walking by Brougham Bridge in
Dublin in 1843, that he needed quad-

ruplets. The discovery soO excited

Hamilton that he carved the funda-
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mental formulas in the bridge's
stonework:

=2 =2 =ik =1

Here was a three dimensional
analogue of complex numbers to rep-

resent vectors in space, and he spent
the final 22 years of his life develop-
ing and applying them. His results
appeared in Lectures on Quaternions
(1853) and the two-volume, posthu-
mously published Elements of Qua-
ternions (1866).

95. From Elements of Quaternions (1866)*
(O_n Quaternions, a Generalization of Complex Numbers)

WILLIAM ROWAN HAMILTON

108. Already we may see grounds for
the application 6f the name QUATER-
NION, to such a Quotient of two Vec-
tors as has been spoken of in recent ar-
ticles. In the first place, such a quotient
cannot generally be what we have
called. a SCALAR: or in other words, it
cannot generally be equal to any of the
(so-called) reals of algebra, whether of
the positive or of the negative kind. For
let x denote any such (actual)' scalar,
and let « denote any (actual) vector;
then we have seen that the product xa
denotes another (actual) vector, say 8,
whi_ch is either similar or opposite in di-
rection to «, according as the scalar
coefficient, or factor, x, is positive or
negative; in neither case, then, can it
represent any vector, such as 8, which
is inclined to «, at any actual angle,
whether acute, or right, or obtuse: or in
other_wprds, the equation B’ = B, or xa
= @3, is impossible, under the conditions
her_e supposed. But we have agreed to
write, as in algebra, (xa)a = x; we must
therefore? . . . abstain from writing also
Bla = x, under the same conditions: x
still denoting a scalar. Whatever else a

quotient of two inclined vectors may be

- *Source: This selection edited b
(ed.), A Source Book in Mathematics (1929)

'

found to be, it is thus, at least, a NON-
SCALAR.

109. Now, in forming the conception
of the scalar itself, as the quotient of two
parallel® vectors"~we took into account
not only relatitc length, or ratio of the
usual kind, but also relative direction,
qnder the form of similarity or opposi-
tion. In passing from « to xa, we altered
generally the length of the line «, in the
ratio of £x to 1; and we preserved or
reversed the direction of that line, ac-
cording as the scalar coefficient x was
positive or negative, and, in like man-
ner, in proceeding to form, more defi-
nitely than we have yet done, the con-
ception of the non-scalar quotient, g =
B:a = OB:OA, of two inclined vectors,
which for simplicity may be supposed
to be co-initial, we have still to take ac-
count both of the relative length and of
the relative direction, of the two lines
compared. But while the former ele-
ment of the complex relation here con-
sidered, between these two lines or vec-
tors, is still represented by a simple
RATIO (of the kind commonly consid-

ered in geometry), or by a number* ex-
pressing that ratio; the latter element of
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the same complex relation is now repre-
sented by an ANGLE, AOB: and not
simply (as it was before) by an algebrai-
cal sign + or —.

110. Again, in estimating this angle,
for the purpose of distinguishing one
quotient of vectors from another, we
must consider not only its magnitude (or
quantity), but also its PLANE: since
otherwise, in violation of the principle®
.. we should have OB":0A =
OB:0OA, if OB and OB’ were two dis-
tinct rays or sides of a cone of revolu-
tion, with OA for its axis; in which case
... they would necessarily be unequal
vectors. For a similar reason, we must
attend also to the contrast between two
opposite angles, of equal magnitudes,
and in one common plane. In short, for
the purpose of knowing fully the relative
direction of two co-initial lines OA, OB
in space, we ought to know not only
how many degrees . .. the angle AOB
contains; but also ... the direction of
the rotation from OA to OB: including a
knowledge of the plane, in which the
rotation is performed; and of the band
(as right or left, when viewed from a
known side of the plane), towards
which the rotation is directed.

111. Or, if we agree to select some
one fixed band (suppose the right hand),
and to call all rotations positive when
they are directed towards this selected
hand, but all rotations negative when
they are directed towards the other
band, then, for any given angle AOB,
supposed for simplicity to be less than
two right angles, and considered as rep-
resenting a rotation in a given plane
from OA to OB, we may speak of one
perpendicular OC to that plane AOB as
being the positive axis of that rotation;
and of the opposite perpendicular oc’
to the same plane as being the negative
axis thereof: the rotation around the
positive axis being itself positive, and
vice-versa. And then the rotation AOB
may be considered to be entirely
known, if we know, first, its quantity, or
the ratio which it bears to a right rota-
tion; and second, the direction of its

positive axis, OC, but not without
knowledge of these two things, or of
some data equivalent to them. But
whether we consider the direction of an
AXIS, or the aspect of a PLANE, we find
(as indeed is well known) that the- de-
termination of such a direction, or of
such an aspect, depend on TWO polar
coordinates, or other angular elements.
112. 1t appears, then, from the
foregoing discussion, that for the com-
plete determination, of what we have
called the geometrical QUOTIENT of
two coinitial Vectors, a System of Four
Elements, admitting each separately of
numerical expression, is generally re-
quired. Of these four elements, one
serves to determine the relative length
of the two lines compared; and the
other three are in general necessary, in
order to determine fully their refative di-
rection. Again, of these three latter ele-
ments, one represents the mutual incli-
nation, or elongation, of the two lines;
or the magnitude (or quantity) of the
angle between them; while the two
others serve to determine the direction
of the axis, perpendicular to their com-
mon plane, round which a rotation
through that angle is to be performed, in
a sense previously selected as the posi-
tive one (or towards a fixed and previ-
ously selected band), for the purpose of
passing (in the simplest way, and there-
fore in the plane of the two lines) from
the direction of the divisor-line, to the
direction of the dividend-line. And no
more than four numerical elements are
necessary for our present purpose: be-
cause the relative length of two lines is
not changed when their lengths are al-
tered proportionally, nor is their relative
direction changed, when the angle
which they form is merely turned about,
in its own plane. On account, then, of
this essential connexion of that complex
relation between two lines, which is
compounded of a relation of lengths,
and of a relation of directions, and to
which we have given (by an extension
from the theory of scalars), the name of
a geometrical quotient, with a System of
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FOUR numerical Elements, we have al-
ready a motive for saying that “‘The
Quotient of two Vectors is generally a
Quaternion’’.®

[Text omitted.]

181. Suppose that Ol, OJ, OK are
any three given and coinitial but rectan-
gular unit lines, the rotation around the
first from the second to the third being
positive; and let Ol’, O, OK' be the
three unit vectors respectively opposite
to these, so that

Ol' = -0l, 0}’ = -0J, OK’ = ~OK.

Let the three new symbols i, j, k denote
a system of three right versors,” in three
mutually rectangular planes, ...; so
that ... i = OK:0J, j = OLOK, k =
0J:0], as the figure may serve to illus-
trate. We shall then have these other
expressions for the same three versors.
0J":0K = OK":0J’ = OJ:0K’;
OK":0l = OI':0K’ = OK:Ol’;
01:0) = O):.0lI' = OLOJ,;

o

J
k

while the three respectively opposite
versors may be thus expressed:

—i = OJ:0K = OK"QJ = OJ":OK’

. = OK:0)’
—j = OK:0! = OI":OK = OK":Ol'
= Ol:0OK’
~k = 0I:0) = 0):01 = OI":0
= OJ:0r

In the second place, since
ij = (O)J:0K").(OK":0l) = 0OJ:0|, etc.,

we have the following values for the
products of the same three symbols, or
versors, when taken two by two, and in
a certain order of succession . . . :

1 ij=kjk=1iki=j
But in the third place . .., since
ji = (OI1:.0K).(OK:0)) = OI:0, etc.,

we have these other and contrasted
formulae, for the binary products of the
same three right versors, when taken as
factors with an opposite order:

11 ji = =k; kj = —i; ik = —j.

Hence, while th~ square of each of the
three right ve ors, denoted by these
three new symbols, i, j, k, is equal to
negative unity, the product of any two
of them is equal either to the third itself,
or to the opposite of that third versor,
according as the multiplier precedes or

follows the multiplicand, in the cyclical
succession

PG A P

which the annexed figure may give
some help towards remembering.

183. Since we have thus ji = —ij, . ..

we see that the laws of combination of

and from the comparison of these dif-

ferent expressions several important

symbolical consequences follow . . .
182. In the first place, since

i2 = (Q)":0K).OK:OJ) = O)":0), etc.,

we ‘deduce the following equal values
for the squares of the new symbols:

the new symbols, i, j, k, are not in all
respects the same as the corresponding
laws in algebra; since the Commutative
Property of Multiplication, or the con-
vertibility of the places of the factors
without change of value of the product,
does not here hold good; which arises
from the circumstance that the factors to
be combined are here diplanar versors.
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It is therefore important to observe that
there is a respect in which the faws of i,
j, K agree with usual and algebraic laws:
namely, in the Associative Property of
Multiplication; or in the property that
the new symbols always obey the as-
sociative formula

LKA = LKA,

whichever of them may be substituted
for 1, for k, and for \; in virtue of which
equality of values we may omit the
point in any such symbol of a ternary
product (whether of equal or unequal
factors), and write -it simply as kA, In
particular, we have thus,

ijk=ii=iz=-1;
ik =kk =k =-1;

or briefly
ik = —1.

We may, therefore, . . . establish the fol-
lowing important Formula:

p=i=k =ik=—1;

... which we shall find to contain (vir-
tually) all the laws of the symbols i, j, k,
and therefore to be a sufficient symboli-
cal basis for the whole Calculus of
Quaternions: because it will be shown
that every quaternion can be reduced to
the Quadrinomial Form,

q=w +ix +jy + kz,

where w, X, y, z compose a system of
four scalars, while i, j, k are the same
three right versors as above.

If two right versors in two mutually
rectangular planes, be multiplied to-
gether in two opposite orders, the two
resulting produsts will be two opposite
right versors, in a third plane, rectangu-
lar to the two former; or in symbols . ..

q'q = —aq’

... Inthis case, therefore, we have what
would be in algebra a paradox ...
When we come to examine what, in the
Jast analysis, may be said to be the
meaning of this last equation, we find it
to be simply this: that any two quadran-
tal or right rotations, in planes perpen-
dicular to each other, compound them-
selves into a third right rotation, as their
resultant in a plane perpendicular to
each of them: and that this third or re-
sultant rotation.has one or other of two
opposite directions, according to the
order in which the two component rota-
tions are taken, so that one shall be suc-
cessive to the other. :

NOTES

. Non zero.
. By the second assumption.
. Or collinear.
. “The tensor of the quotient.”
. Assumption 2.
. “Quaternion . ..
Four.”
7. A right versor is an operator which pro-

SNt W =

signifies ... a Set of

duces a rotation of a right angle about a ~

given axis in a given direction.
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Chapter VIII
The Nineteenth Century

Section A
Algebra

GEORGE BOOLE (1815-64)

George Boole, mathematician and
logician, was born at Lincoln, Eng-
land. His father, John Boole, was a
cobbler deeply inferested in elemen-
tary mathematics and the making of
optical instruments. At an early age,
the boy learned to assist his father
and received his first lessons in math-
ematics from him. Young Boole at-
tended a local elementary school and,
briefly, a small commercial school.
His favorite subject was classics. Wil-
liam Brooke, the owner of a scholarly
circulating library, taught him Latin;
Boole also learned Greek, French,
and German on his own by age 14.

At age 15 Boole's future was seri-
ously affected when his father's busi-
ness declined. He set aside thoughts
of taking holy orders and worked to
help support his family. He began
teaching in the village schools of the
West Riding of Yorkshire. At age 20 he
opened his own school in Lincoln. It
was during these early years of teach-
ing that Boole's talent for mathematics
emerged. The Mechanics Institution
(founded in Lincoln in 1834) had
Royal Society publications in its read-
ing room (Boole's father was curator of
that room), and Boole devoted his
scant leisure time to studying mathe-
matics there. Almosi unaided, he
wrestled with Newton's Principia, La-
grange's Mécanique analytique, and
Laplace’s Mécanique céleste. He

quickly earned a local reputation as a
learned man. In 1835, at age 19; his
first scientific publication, “An Ad-
dress on the Genius and Discoveries
of Sir Isaac Newton,” was published.
Boole's work-soon became known to
a wider audig .ze in the sciences. Be-
ginning in 1839, he published a series
of original papers on linear transfor-
mations and differential equations in
the recently founded Cambridge
Mathematical Journal. His papers
from 1841 through 1843 on linear
transformations generalized algebraic
studies of Lagrange and Gauss on the
relative invariance of discriminants
and examined the absolute invariants
of transformations. The limited results
in these papers, representing a start-
ing point of the theory of algebraic in-
variants, were extensively developed
by one of their readers named Arthur
Cayley. Unlike many of his contem-
poraries, Boole's treatment of dif-
ferential equations went well beyond
successful technical manipulation. He
made the foundations of his subject
more secure by avoiding the faulty
use of analogy and insisting on pre-
cise definitions together with a rigor-
ous process of reasoning. Using this
approach he increased the power. of
the operational calculus. Boole also
contributed to the Philosophical
Transactions of the Royal Society,
winning its Royal Medal in 1844 for




