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15.A3 The constructability of the regular 17-gon

(a) The discovery of the constructability

"It is well known to every beginner in Geometry that various regular polygons can be
constructed geometrically, namely the triangle, pentagon, 15-gon, and those which
arise from these by repeatedly doubling the number of sides. One had already got this
far in Euclid’s time, and it seems that one has persuaded oneself ever since that the
domain of elementary geometry could not be extended; at least I do not know of any
successful attempts to enlarge its boundaries on this side.

It seems to me then to be all the more remarkable that besides the usual polygons
there is a collection of others which are constructable geometrically, e.g. the 17-gon. This
discovery is properly only a corollary of a not quite completed discovery of greater
extent which will be laid before the public as soon as it is completed.

(b) The theory underlying the constructability

Nevertheless none of these equations is so tractable and so suitable for our purposes as
x" — 1 = 0.Itsroots are 1nt1mately connected with the roots of the above. That is, if for
brevity we write i for the imaginary quantity \/ 1, the roots of the equation
x" — 1 =0 will be
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where for k we should take all the numbers 0, 1,2,...,n — 1. Therefore since 1/r = .
cos kP/n — isin kP/n the roots of equation I will be [» — (1/r)]/2i or i(1 — r*)/2r; the
roots of equation II, [r + (1/r)]/2 = (1 + r*)/2r; finally the roots of equation III,
i(1 — r?)/(1 + r?). For this reason we build our investigation on a consideration of the
equation x" — 1 = 0, and presume that » is an odd prime number.
[When Gauss considered the 17-gon, whose vertices are the complex roots of
x'7 — 1, he labelled the 16 roots other than x =1 [1],[2],...,[16], and then
calculated them by working through a chain of four quadratics. H1s results expressed
numerically, are as follows.]
If we then compute the remaining roots we will obtain the following numerical
values, where the upper sign is to be taken for the first root, the lower sign for thé
second: |

[1]1,[16]... 0.9324722294 + 0.3612416662i
[2],[15]... 0.7390089172 + 0.6736956436i
[3],[14]... 0.4457383558 + 0.8951632914i
[41,[13]... 0.0922683595 + 0.9957341763i
[5],[12] ...—0.2736629901 + 0.9618256432i
[6],[11]...—0.6026346364 + 0.7980172273i
[7],[10]...—0.8502171357 + 0.5264321629i
[81,[ 9]...—0.9829730997 + 0.1837495178i
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Thus by the preceding discussions we have reduced the division of the circle into n
parts, if n is a prime number, to the solution of as many equations as there are factors in
the number n — 1. The degree of the equations is determined by the size of the factors.
Whenever thereforen — 1is a power of the number 2, which happens when the value of
nis 3, 5, 17, 257, 65537, etc. the sectioning of the circle is reduced to quadratic
equations only, and the trigonometric functions of the angles P/n, 2P/n, etc. can be
expressed by square roots which are more or less complicated (according to the size
of n). Thus in these cases the division of the circle into n parts or the inscription
of a regular polygon of n sides can be accomplished by geometric constructions.
Thus, e.g.,forn = 17, by articles 354,361 we get the following expression for the cosine
of the angle P/17:

—15 + 15/17 + 15./[34 — 2/17]
+5/017 +3/17 = /(34 = 2/17) - 2,/(34 + 2,/17)]

The cosine of multiples of this angle will have a similar form, but the sine will have one
more radical sign. It is certainly astonishing that although the geometric divisibility of
the circle into three and five parts was already known in Euclid’s time, nothing was
added to this discovery for 2000 years. And all geometers had asserted that, except for
those sections and the ones that derive directly from them (that is, division into 15, 3 - 2¥,
5+2*,and 2* parts), there are no others that can be effected by geometric constructions.
But it is easy to show that if the prime number n = 2™ 4 1, the exponent m can have no
other prime factors except 2, and so it is equal to 1 or 2 or a higher power of the number
2. For if m were divisible by any odd number { (greater than unity) so that m = {n,then
2" + 1 would be divisible by 27 + 1 and so necessarily composite. All values of n,
therefore, that can be reduced to quadrat1c equations, are contained in the form
22 + 1. Thus the five numbers 3, 5, 17,257, 65537 result from letting v = 0, 1,2, 3,4 or

= 1,2,4,8, 16. But the geometric division of the circle cannot be accompllshed forall
numbers contained in the formula but only for those that are prime. Fermat was misled
by his induction and affirmed that all numbers contained in this form are necessarily
pr1me but the distinguished Euler first noticed that this rule is erroneous for v = 5 or

= 32, since the number 232 + 1 = 4294967297 involves the factor 641,

Wheneve_r n — limplies prime factors other than 2, we are always led to equations of
higher degree, namely, to one or more cubic equations when 3 appears once or several
times among the prime factors of n — 1, to equations of the fifth degree when n — 11is
divisible by 5, etc. We can show with all rigour that these higher-degree equations cannot
be avoided in any way nor can they be reduced to lower-degree equations. The limits of
the present work exclude this demonstration here, but we issue this warning lest
anyone attempt to achieve geometric constructions for sections other than the ones
suggested by our theory (e.g. sectionsinto 7, 11, 13, 19, etc. parts) and so spend his time
uselessly.

15.A4 The charms of number theory

The fundamental theorem on quadratic residues is one of the most beautiful truths of
higher Arithmetic, [and] was indeed easily found by induction [inspection from



