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i—!ere;after we omit the period after sin and ¢
did in later work.4]
§132. Since

os and write i for V' ~1, as Euler also

85. From Introductio in analysin infinitorum
(1748)*

(Trigonometry)

(sinz)? +(cosz)? =1, .
we shall have by factorization

(cosz +isinz)cosz —isinz) = 1,

which factors, although imagi i imaginarii], sti -

\ , ginary [etsi i i

g and muliolying e o) coZines, imaginarii], still are of great use in combin-
[Now comes De Moivre’s theorem® (

which follows, in §133:]
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though the name is not mentioned), from .

ON TRANSCENDENTAL QUANTITIES WHICH CAN BE cos ny = €08z +isinzh + (cosz = ,~' sin z)n
. OBTAINED FROM THE CIRCLE ' G
§126. After logarithms and exponential quantities we shall investigate circular
arcs and their sines and cosines, not only because they constitute another type of . (Cos 7 + 1 si - s
transcendental. quantities, but also because they can be obtained from these very sin nz, = I 5in z)n- — (cos z —i sin z)n
- 2

logarithms and exponentials when imaginary quantities are involved.

Let us therefore take the radius of the circle, or its sinus totus, = 1. Then it is
obvious that the circumference of this circle cannot be exactly expressed in rational
numbers; but it has been found that the semicircumference is by approximation

o = 3.14159.26535.89793 . ..
(127 decimal places are given?] for which number | would write for short

When we develop thése binomials in a series w.elshall get
nin — 1)

COs Nz = (cos z)n —
1.2

(cos z)n-2 (sin z)? + etc.

sin nz :% (COS z)n—] sinz — Mﬁ
‘. 123
134, Let the arc z be infinitely small; then we getsinz =z and cosz = 1: let

n be an infinitely large number i i i
r : ber, while the arc.nz is of fini i
v; then since sin z = z = v/n we shall have finite magnitude. Take

i, (cos z)n-3 (sin)2 + etc,

so that 7 is the semicircumference of the circle of which the radius = 1, or  is the
length of the arc of 180 degrees.’

§127. If we denote by z an arbitrary arc of this circle, of which | always assume
the radius = 1, then we usually consider of this arc mainly the sine [sinus] and
cosine [cosinus]. | shall denote the sine of the arc z in the future in this way

sin. A.z, oronly sin. z

. v? Cove
cosv =1 — — 4. _
123 ' 1234 T ete.

and the cosine accordingly
' cos. A.z, oronly cos. z

. _ y3 VS
SiINv =v —
123 " 72345 — - tec

Hence we shall have, since m is the arc of 180°,

- by writi -n . = . ) '
sin.0 =0, cos.0 =1 y writing v P} Euler obtains a series for sin —- 90° with terms up to
n :

d a series for cos - 90° wi m» ,
= 90° with terms up to T the coefficients given to 28

:;Ot:Ie;Iserlzézsfs()llov:edkby serLes for the tangent and the cotangent. He shows
5. ary to know the numerical values of the
> only s . se quantities for th
_ m %Oto 30°to be able to find them all by identities such as sin (30 +z) —S
n G - z). Herg cosec. z and sec. z are introduced.]
o SSnO\AI/Itake in the formulas.of §133 the arc z infinitely small and let n
y small number e [Euler writes i] such that & will take the finite value

Shaveg=vand2_v/ X .
= v/¢ hence sin z = _
g-these values we find z =vleand cos z = 1. After

<1+V_">€+ <1_V_">‘
cos v = € €

2 ’

and
v sin. ar = 1, cos. Yaar =0...
[Now follows a whole set of trigonometric formulas including the definitig

sin. z Cos. Z .. . .
tang. z = P cot o the addition formulas, and identities such as
R COS. Z

N
1

tang. 2 +b _ sin.a +sin b
& 3 cos.a +cos. b’

*Source: This translation of chapter eight of the Introductio is reprinted by permission 0 i
publishers from A Source Book in Mathematics, 1200-1800, edited by D. ). Struik, Cambr
Mass.: Harvard University Press, Copyright © 1969 by the President and Fellows of
College.
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In the previous chapter we have seen that

FAN
<1+ ->=e,
€

where by e we denote the base of the hyperbolic logarithms; if we therefore write
for z first iv, then —iv, we shall have

sinv =

eiv — e-iv
2

cos v

and |
piv. — e—iv
2i ’
From these formulas we can see how the imaginary exa\onential quantities can be
reduced to the sine and cosine of real arcs. Indeed, we have
eiv =CcosVv +15sinv,

sinv =

e-iv = cosv —isinv.
[Then follow in §139 some formulas for the logarithms leading up to
1 | €osz +isinz
2T cosz —isinz’

where | indicates logarithm.] .

. sin z
§140. Since o5z

way that we have
1,1 +itangz
T2 —itangz’

Now we have seen above (§123) that
1T +x 2x 2x3 2x3 2x7

R N N e I o = (o
1 —x 1 3 5 7
We now put x =i tang z and shall obtain
7
_tangz  (tangz)’ + (tang z)° + (tang z) + etc.
o 1 5

i i hi
If we therefore put tang z = t, so that z is the arc of which the tangent is t, W
we shall indicate by A. tang. tlour tan™ t}, we shall have
z = A. tang. t.
Therefore, for known ¢, the corresponding arc 7wiII bge
R T
*TT 73757779 3
. ko —m
Therefore, if the tangent t is equal to the radius 1, the arcz = 457 or z 7
we shall have

— = +etc,

i —

= tang z, the arc z can be expressed by its tangent in sucha 2
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which is the series first found
of the circle.

[The chapter ends with some other series for m that 'cor‘wverge more rapidly.]

by Leibniz to express the value of the circumference

NOTES

1. [Does.not appear in. text reproduced here. ]

2. Euler took this value from T. G. de Lagny, “Mémoire sur la quadrature du cercle,”
Histoire de I’Académie Royale, Paris, 1719 (1727), 1e partie, 176-189, who computed 7 to
127 decimal places by means of a series for tan™ 30°

3. The symbol a was never used in Antiquity; it seems first to have been used by William

Jones (the editor of Newton’s Analysis per aequationes, London, 1711) in his Synopsis pal-
mariorum matheseos (London, 1706), P. 243. See D. E. Smith, History of mathematics (Ginn,
New York, 1925), Il, 312, Euler used  in his Mechanica (1736); see note 1 in his biography.
See E. W. Hobson, Squaring the circle (Cambridge University Press, Cambridge, England,
1913). Euler, using the term sinus totus for the radius of the circle; adheres for the last time to
the old terminology, in which the sine is a segment. . : :

, presented to the Saint Petersburg Academy,
; published in the posthumous vol. IV of the Institutiones calculi integralis (1794), 183—
94; Opera omnia, ser. 1, vol. 19, 129-140, p. 130.

.5. This theorem, now usually written (cos ¢ + i sin & =cosng +isin n¢, appears at the

pening of A. de Moivre, Miscellinea analytica (London, 1730), but in a different, ‘more
‘geometrical, form. .




Theorem 1. The sum of two biguad-
ratic numbers such as a* + b* cannot be
a square number unless one of the two
biquadratic numbers vanishes.
Proof. | shall change the theorem to
be demonstrated in such a way that |
shall show that if in one case a* + b*
were a square, no matter how large the
i numbers a and b, then | can progres-
: sively find smaller numbers a and b and
at the end can reach the smallest inte-
gral numbers. Since there are no such
: smallest numbers of which the sum of
| the biquadratic numbers is a square, we
Ly must conclude that there are no such
. among the largest numbers.

‘ Let therefore a* + b* be a square and
a and b be relative primes, since if they
were not relative primes, then | could

| reduce them by division to primes. Let a
; be an odd number; then b must be
H even, since necessarily one number
must be even, the other one odd. Let us
therefore write

I at =p? —q, b*=2pqg;

here the numbers p and g must be rela-
tive primes, the one even, the other
odd. But if a? = p? — @2, then it is
necessary that p be odd, because
otherwise p? — g? could not be a
square. Hence p is an odd number and
q an even one. Since 2pg must also be a
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90. From ‘“Demonstrations of Certain
Arithmetical Theorems” (1738)*

(A proof of Fermat's great theorem—x" + y” = z” has no positive
integral solutions for n > 2—for the case n = 4.

? LEONHARD EULER

square it is necessary that both p and 2q
be a square, because p and 2q are rela-
tive primes. Since p? — g? is a square, it
is necessary that

p =m?+n? and g = 2mn,

where again m and n are relative prime .
numbers, of which one is even, the
other odd. But since 2q is a square,
4mn, or mn is a square, hence m and n
are squares. If we therefore put -

m-=x? =y
then we shall have

p =m? +n? =x'+ vy

which must equally be a square. Fro
this it follows that if a* + b* were
square, then also x* + y* would, be
square, but it is clear that the numbers
and y would be far smaller than a ar
b. In the same way we shall from
biquadratic numbers x* +'y* again-0
tain smaller ones, of which the sum.ig
square, and we progressively reach
smallest biguadratic number among.fl
integers. But since there are no smal
biquadratic numbers of which the
gives a square, it is clear that there
no very large numbers either. Howe
if in one pair of the biquadratic num
one of the terms is zero, then in al

maining pairs the one term vani
that ‘here nothing new resultasr.mheSl 0

Corollary 1. Since. therefore the sum
of two biquadratic numbers cannot be a
square, it is a fortiori impossible that the
sum of two biquadratic numbers results
in a-biquadratic number,

Cgro://ary 2. Although this demon-
stration pertains only to integers, yet it
also .shows that we ‘cannot find afnong
fractions two biquadratic. numbers of
which- the sum is a square. Indeed. if
@%m* + b4 were a square, then
n* + b*m*, which is a sum of integers
ould also be a square; which we have
proved to be impossible. :
Corollary 3. By means of the same
Pproof we can conclude that no numbers
and.q exist such that p, 2q and p? —
re squares; if such numbers existed
there would be values for a and b
hich would render a* + p+ square; for

ena = Vp? — g2 and b = \/qu. Corollary 2.
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Corollary. 4. Suppose therefore p = x2
and 2q = 4y?, thenp? — g2 =4 — 4y,
»T“hen it could not at all happen, thai
X — 4y* were a square. Nor could 4x4
~ y*bé a square; for then Toxt — 4y
would be a square, which reduces it to
the former case, because 16x4 is a
Biquadratic number. R

Corollary 5. From this it follows ihat
also ab(? + b?) can-never be a square
vFo_r the factors a, b, a2 + b2, gl relativé
primes, would have to 'be”square\s
wfgch /I/S impossible. ,

orollary 6. In-a similar w.
cannot exist relatively prime njr:;btehr(s?r:
and b such as to make 2ab(az — b?) a

square. This follows from* Corollary '3
where it was proven that no numbersp/
and g exist such as to make p, 2q, p? —
q* squares. And all this is valid aiso for
numbers that are not relative primes
and the same for fractions according to

: Source: The article “Theorematum quorundam arithmeticorum demonstrationes’ap
I in the Commentarii of the St. Petersburg Academy, vol. 10 (1738, published 1747), 12
This translation of an extract is reprinted by permission of the publishers from A Sourc
in Mathematics, 1200-1800, edited by D. J. Struik, Cambridge, Mass.: Harvard‘Un
Press, Copyright © 1969 by the President and Fellows of Harvard College.




