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In this section in particular, we will consider series of this last kind. If, for greater
convenience, we set

(2) z = r(cos 8 + i sin 8),

where r denotes a real variable and 6 a real arc, series (1) becomes

(3
a, + a, ricos 8 + i sin @) + a, r¥(cos 26 + i sin 26) + -+ + a,r"(cosnd +isinnd) + - - -

Now ... let A be the largest of the limits to which the nth root of the absolute
value of a, tends as n increases indefinitely.” The largest of the limits to which the
nth root of the absolute value of the complex expression a,z” = a,r"(cos nf +
i sin n#) converges under the same assumption will be equivalent to the magnitude
of the product Az; hence . . . the series (3) will be convergent or divergent depend-
ing on whether the product Az has a magnitude less than or greater than 1. From
this remark, one immediately deduces the following proposition:

THEOREM. The series (3) is convergent for all values of z contained between the
limits z = — 1/A and z = + 1/A, and divergent for all values of z lying outside the
same limits. In other words, the series (1) is convergent or divergent [according as]
the absolute value of the complex expression z is less than or greater than 1/A.

NOTES

1. A. L. Cauchy, Qeuvres (2), lll, which reproduces his Cours d’analyse de I’Ecole
Polytechnique. . Analyse algebrique. Selection 1a is from pp. 19, 43; 1b is from pp. 114-116;

1c is from pp. 239-240.
2. Here and elsewhere, Cauchy’s “valeur numérique” has been translated as ““absolute

value” or “magnitude.”
3. Cauchy writes ““quantité infiniment petit.” Note his clear specification of an infinitesimal

as a variable quantity tending to zero, not a constant set equal to zero.
4. Here and elsewhere, Cauchy uses the phrase ““entre des limites données” for “in a given

interval.”
5. Cauchy uses the word “série” for “sequence” and “series” alike; moreover, he puts-a

comma in (1) where today one writes a plus sign. ;
6. "“Imaginaire’’ has been translated "“complex” throughout this book. Cauchy uses x for z

z forr, and V-1 for i,
7. In modern notation, let A = lim sup,_,..|a, |

-the infinitesimal differences will be
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whence one concludes that

M fix + ak) — f(x) _ ftx + h) — fx) K
@ h

The limit toward which the left side of equation (1)} converges as the variable «

tends to zero, the quantity k remaining constant, is called the differential of the

function y = f(x). We indicate this differential by the symbol d, as follows:

dy or df (x).

It is easy to obtain its value when we know that of the derivative y’ orf '(x). Indeed,
taking the limits of the two sides of equation (1), we shall find generally

(2) df(x) = kf '(x).
In the special case where f(x) = x, equation (2) reduces to
(3) dx = k.

Thus the differential of the independent variable x is just the finite constant k.
Granting this, equation (2) becomes

(4) df(x) = f'(x)dx
or, what amounts to the same thing,

(5) dy =y'dx

It follows from these last [equations] that the derivative y’ = f’(x) of any function y
= f(x) is precisely equal to dy/dx, that is, to the ratio of the differential of the
function to that of the variable, or, if one wishes, to the coefficient by which the
second differential must be multiplied in order to obtain the first. it is for this reason
that we sometimes give to the derivative the name of differential coefficient.*

NOTES

1. A. L. Cauchy, Résumé des lecons . . . sur le calcul infinitésimal (Paris, 1823); Oeuvres
(2), IV, 22ff, 27ff. Our translation has been adapted from the translation by Evelyn Walker (E.
W.) in Smith, Source Book. E

2. Cauchy uses i for h and h for k.

3. The phrase ““fonction dérivée’ and the notation f’(x) were due to Lagrange. .

4. After this Cauchy gives the rules for differentiating various elementary functions: alg
braic, exponential, trigonometric, and inverse trigonometric. (E. W.) :
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Thi;;ran§latign of thg Sev’epth Lesson By Judith V. Grabiner is taken from Historia
78),406-407. It'is reprinted by permission of Academic Press. A
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