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GLASSICS:OF MATHEMATICS * &

. Chapter vilr
The Enlightenment (1720-1800)

: ‘Section A o
Elaboration and Criticism of Mathematical Analysis

BROOK TAYLOR (1685-1731)

During the early Enlightenment,.
Brook Taylor was one of the few Eng-
lish mathematicians who could hold
his own in disputes with Continental
rivals, especially withi John Bernoulli.
The eldest son of John and Olivia Bart
Taylor, he grew.-up in a comfortable
family of the minor nobility. In 1701
Brook entered St. John's College,
Cambridge. (where he studied under
John Mackin and John Keill}). He re-'
ceived the LL. B, (1709) and LL. D.
(1714). Elected a Fellpw of the Royal
Society in- 1712, he.sat on the commit-
tee that decided whether .Newton or
Leibniz deserved priority for the inven-
tion of the calculus. He was elected
secretary of the Royal Society in 1714
but.resigned the position in 1718 be-
capse of ill health and possibly from
ladk of interest in that confining task..

Taylor's most productive mathemat-
ical period. dates from 1713 to 1719.
He published two books on mathemat-
ics in ‘1715,  entitled Methodus
Incrementorum Directa et Inversa ("Di-
rect and Indirect Methods of. In-
¢rementation”) and Linear Pérspec-
tive; During the ‘period 1712 to 1724,
he also wrote 13 articles for the Philo-
sophical Transactions of the Rovyal
Society: and visited France on-several
’occaéior_]s. forisocial enrichment and

/ to.improve .his health.. In_France, he
met the mathematician Pierre Rémond

de Montmort, and the two men sub-
sequently corresponded with each
other on the subjects of religion, infi-
nite series, and probability. In this
correspondence Taylor sometimes
acted as an intermediary between
Montmort and Abraham de Moivre in
their studies of probability and
suggested problems that needed 10
be solved. ,

After 1720, Taylor concentrated on
art, philosophy, religion, music, and
family matters. A brief rift with his
morose father occurred when Taylor
married a woman who had no fortune.
After she died during childbirth in
1723, Taylor returned to his parent's
home at Bifrons, Kent, and then remar-
tied in 1725 (this time with his father’s
approval). He and his second wife,
Sabetta Sambridge, moved to Bifrons
estate when he inherited it in 1729.
The next year Sabetta died during the
birth of their daughter, Elizabeth, who
survived. Taylor's delicate health
rapidly worsened. :

Taylor- contributed to- the early .de-
velopmient of the calculus. He is best
known for deriving the powerful. for-
mula for expanding a-function into an
infinite” series that is .now' known:as
Taylor's theorem. He, first explicitly
stated it as ‘Proposition VIl.of Theorem
Il in his book: Methodus -Incremen-
torum, In-modern notation, it is.
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Conversant with the work of his pred-
ecessors, especially the British ones,
he freely admitted a debt in deriving
the theorem to Newton, Mackin, and
Halley as well as to the German
Kepler. Indeed he praised Newton,
used his dot notation, and built upon
Lemma V of Book Ill and Corollary I} to
Theorem (Il of the Principia. However,
he was not so forthright about his in-
debtedness to contemporary Central
European mathematicians. Even
Fhough he knew of Leibniz's pioneer-
ing work on finite differences and
John Bernoulli's independent discov-
ery of Taylor's theorem, which was
given in Acta eruditorum (1694), he
mentioned neither. Moreover, he did
n.o? worry over his lack of rigor in de-
riving the theorem nor did he seem to
grasp the important role assigned to it
by Lagrange, who in 1772 proclaimed
|t.to be “the fundamental principle of
differential calculus.”

Because of its arithmetical exposi-
tion, the Methodus had little im-
mediate influencein Britain where the
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primary attempts were to link the cal-
qulus to geometry or the physical no-
tlpn of velocity. Peano later wanted to
give John Bernoulli priority for the
‘Taylor series,” but historians agree
that'Taylor deserves priority. for inte-
gration by parts. Taylor and Bernoulli
each claimed priority and sharply
disagreed in other matters as well.
_In the Methodus ‘Taylor also estab-
lished what is now called the calculus
of finite differences as a new branch
of higher analysis. With it he was able
to reduce the motion of a vibrating
elastic string to mechanical principles
and to study the associated second
order differential equation. He solved
the equation a% = $yy, where s =
\/.x2 + ¥2 and the differentiation is
V\{Ith respect to time, and gave y + A
sin (X/a) as the form of the string at ariy
time. In his overly concise book on
linear perspective, he developed a
theory of perspective in a formal and
rigorous manner and presented the
farst general treatment of vanishing
points and vanishing lines. ‘

81. From Methodus Incremehtorum Directa ét |

Inversa (1715)*
(The Taylor Series)

BROOK TAYLOR!

ir]P'ropOS/tior.) VIL Theprem ll. Let z and x be two variable quantities, of which z
_C"reases uniformly with given increments Az.?2 Let nAz = v,v— Az =19, 09— Az
=1, etc, Then | say that when z grows into z + v, then x grows into ,

X v vo
Z+Ax — + A%
1.Az 1.2(Az)?

v
1.2.3(Az)3
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“*Source: This translation made from

ure . pages 21 through 23 of the Methodus i i

gfr{;ml:ss(ljon of .the publishers from A Source Book in Mathematics, 7200-7800S :d?fe%ng;e% bjy
ik, Cambridge, Mass.: Harvard University Press, Copyright © 1969 by th/e President a.nd.

Fellows of Harvard College.
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_Fig. 1

DEMONSTRATION
X Ax A2x A3x A% efc.
x + Ax Ax + A% A%x + A A3 + A% etc.
X + 2Ax + A% Ax + 2Ax + A% A% + 2A% etc.

+A4x
x + 3Ax + 3A% + A% Ax + 3A2x etc.
+ 3A2%x + A%

X + 4Ax + 6A% etc.

+ 40% + A%

The successive values of x, collected by continued addition, are X, X + Ax, x +
2AX + A%, x + 3Ax + 3AX + A%, etc., as we see from the operation expressed in
the table. But the numerical coefficients of the terms x, Ax, A%, etc. for Fhese valugs
of x are formed in the same way as the coefficients of the corresponding terms in
the binomial expansion [in dignitate binomiil. And if n is the exponen(t of the ex-
pansion [dignitatis index], then the coefficients (according to Newton's theorem)
w‘ill be 1 na r:l i n_—_1 E———%, etc. When, therefore, z grows into z + nAz,

’ ! ’
11 21 2 3 i ,
that is, into z + v, then x will be equal to the series

n n n-1 n n-1 n—2A3 +
— —_— Atx + — ——— ———2°X etc.
x+ gt AT T T 3

But
n _ (nAz v n—1 _ (nAz—Az\ _ 1'Jln—2=<nAz—2Az>= v
T\ ) TR T2\ 2 TR 35z 38z

etc. Hence in the time that z grows into z + v, x grows into’

UL S VOO B .
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Corollary 1. If the Az, Ax, A%, A% remain the same, but the sign of v is :change‘d
so that z decreases and becomes z — v, then x decreases at the same time and

- becomes
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with v, ¥, etc. converted into — vi, — vu, etc.

Corollary 1l If we substitute for evanescent increments the flluxions propovrtlon.a|
to them, then all ¥, v, v, v, vt become equal. When z flows uniformly into z + ¥, X

becomes®

v Vo
x+x — +X

— + o
1z 1.272 et
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e
Y123

or with v changing its sign, when z decreases to z — v, X becomes
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[Text omitted.] ) .

Here follows one of Taylor's applications of the theorem.

Proposition VIII. Problem V. Given an equation which contains, apart from a
uniformly increasing z, a certain number of other variables x. To find the value of x
from given z by a series of an infinite number of terms.

Find all increments, to infinity, of the proposed equation by means of Proposition
L If A7 be the infinite increment of x in the proposed equation, then by means of
these equations will be given all increments A" and those with higher n expressed
by means of increments of lower n. Let a, ¢, ¢, ¢, C,, etc. be certain arbitrary
values corresponding to z and x, Ax, A%, A%, etc.; then by means of these equa-
tions all terms c,, C,4;, and the following can be expressed in terms of the terms
preceding c,. Hence if we write a + v for z, then x will be given by means of
W e 2 4oetc
1.2(Az)? 1.2.3(Az)

x=c+aci Y ot
o 1.8z

(according to Proposition‘ VI). Here the coefficients ¢, c,, ¢C,, etc. of the terms

whose number is n are given by the same number of conditions imposed on the
problem.®

NOTES

1. Taylor used a complicated notation with dots and primes (lineolae) used as superscripts
and subscripts,-and the primes in both the accent grave and accent aigu position. We have
kept his notation, except that instead of the increments z,, Z,, etc. we have written Az, A%z,
etc., and for the v with subscript accents aigus we have written vy, vi, .. ... Taylor's notation
also has its advantage. In his notation x”, x, x’, %, X represent a sequence of functions of which
each is the fluxion of the previous one; whereby Taylor remarks that the lineolae in x’, x" can
be regarded as negative dots—an anticipation, if we like, of our modern operational notation
D-2, D1, D, D', D?, and for the same purpose.

2. Since z flows uniformly, Az is constant, so that A%z, A%z, etc. are all zero. Here A%z is the
increment of Az, A3z that of A%z, etc. ) ) .

3. This is Newton’s well-known interpolation formula (Principia, Book lll, Lemma 5); see
also Newton, Methodus differentialis (London, 1711); James Gregory tercentenary memorial
volume, ed. H. W. Tumnbul! (Bell, London, 1939), 119; H. W. Tumnbull, The mathematical
discoveries of Newton (Blackie, Glasgow, 1945), 46.

4. The viy, v, v, b, ¥ form a sequence of increments, so thatvi — Az = v, vin — Az = v, or
vi= {0+ DAz, v = (n + 2)Az .

5. This is the classical Taylor series, since in the Leibniz notation %/z = dxidz, x/(z)* =
d2x/dz2, etc. Taylor therefore obtained his series from Newton’s interpolation formula by tak-
ing Ax = 0, n = o. Felix Kiein has called Taylor's step “a transition to the limit of extraordi-
nary audacity'’; see Elementary mathematics from an advanced standpoint, trans. E. R. Hed-
rick and C. A. Noble, | (Dover, New York, 1924), 233. Although we shall not belittle this
statement we must also take into account that Taylor’s theorem had been “in the air’’ ever
since James Gregory had it in a manuscript of 1671 (Gregory tercentenary memorial volume,
pp. 123, 173, 356). See also A. Pringsheim, “Zur Geschichte des Taylorschen Lehrsatzes,”
Bibliotheca mathematica (3) 1 (1900), 433-479; G. Enestrom, "“Zur Vorgeschichte der Entdec-
kung des Taylorschen Lehrsatzes,” ibid., 12 (191 1-12), 333-336.

6. This proposition and several others give information on the number of arbitrary con-
stants in difference and differential equations. Taylor, on page 27 of his book, shows how the
differential equation X — xz — 2x = 0 can be solved by means ofx = A + Bz +Cz? + Dz3 +



