## Ideas of Galois

Group of permutations of roots of a polynomial.

For example, $x^{4}+p x^{2}+q=0$

Roots:
$x_{1,2}= \pm \sqrt{\frac{-p+\sqrt{p^{2}-4 q}}{2}}$ and
$x_{3,4}= \pm \sqrt{\frac{-p-\sqrt{p^{2}-4 q}}{2}}$
Note: $x_{1}+x_{2}=0, x_{3}+x_{4}=0$, but $x_{1}+x_{3} \neq 0$

## Ideas of Galois

$$
x_{1}+x_{2}=0, x_{3}+x_{4}=0, \text { but } x_{1}+x_{3} \neq 0
$$

Consider $R=\mathbb{Q}(p, q)$, the set of all rational functions of variables $p, q$ with coefficients in $\mathbb{Q}$. This includes $\frac{3 p^{2}-4 q}{q^{2}-7 p}$ and similar.

Some permutations preserve the root relations - 8 of the 24 . These 8 are the group of the equation in $R$.

Notice: $x_{1}^{2}-x_{3}^{2}=\sqrt{p^{2}-4 q}$. Add this to $R$, so $R^{\prime}=R\left(\sqrt{p^{2}-4 q}\right)$.

New relation in $R^{\prime}$ so group of the equation in $R^{\prime}$ is smaller, now only 4 permutations.

Continue: expand field and narrow group . . . until group only has one element.

## Ideas of Galois

Galois considered an equation and found this sequence of groups - without knowing the roots.

He then asked which expressions are unrelated at one level, but are related at the next, e.g. $x_{1}^{2}-x_{3}^{2}$. He called these resolvents. If they subgroups of the permutations are related in certain ways (minimal normal subgroups), then the equations can be solved by radicals. If the subgroups are index 2 , then the roots are constructible using compass and straightedge.

