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Two Famous Irrational Numbers

First we’ll prove that e is irrational. Notice at least that 2 < e < 3, so e is not an integer. Like all good
irrational proofs, we begin by assuming e = p

q with q ≥ 2 (here is where we use that e is not an integer).
What definition are we using for e? This one:

p

q
= e =
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Now let’s multiply by q!. Notice the left-hand-side is then an integer

p(q−1)! = q!+q!+q · · · 4·3+q · · · 5·4+· · ·+q(q−1)+q+1+
1

q + 1
+

1
(q + 1)(q + 2)

+
1

(q + 1)(q + 2)(q + 3)
+· · ·

Let’s focus on the part after · · · + q + 1 which is not obviously an integer. Recall q ≥ 2. So, q + 1 ≥ 3 and
all others as well.
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This is a geometric series, which converges to the sum of
1
3

1− 1
3

= 1
2

So, the left hand side is an integer, and the right hand side is definitely not. This is a contradiction.
This idea generalises nicely using power series. The same reasoning will prove that e

p
q , sin p

q , cos pq are all
irrational.
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So, now the real one. Here is the famous result that π is irrational. As should be expected we begin
by supposing π = p

q . But that’s where it stops being predictable. And here we go to the interesting part.

Consider this function fn = xn(p−qx)n

n! . Because π = p
q , there are several useful ways we can rewrite this

function:

fn =
xn(p− qx)n

n!
=
xn(qπ − qx)n

n!
=
xnqn(π − x)n

n!
=
xn(p− p

πx)n

n!
=
xnpn(1− 1

πx)n

n!

We’ll have opportunity to think about several of these versions, but it’s all the same function. As always in
mathematics - the more choices you have, the more we can do with it.

Now, let’s notice some things.

• n!f is a polynomial with integer coefficients.

• n!f(π − x) = (π − x)n(p − q(π − x))n =
(
p
q − x

)n (
p− q

(
p
q − x

))n
=
(
p−qx
q

)n
(p − p + qx)n =

(p− qx)n
(
qx
q

)n
= (p− qx)nxn = f(x)n!

• So, f (n)(x) = (−1)nf (n)(π − x)

• If 0 ≤ x ≤ π then 0 ≤ f(x) ≤ πnpn

n! using the last version of f

• For j < n, f (j)(0) = f (j)(π) = 0

• For j ≥ n, f (j)(0) = (−1)jf (j)(π) ∈ Z

Now let Fn(x) = fn(x)−f ′′n (x)+f (4)
n (x)−f (6)

n (x)+· · ·+(−1)nf (2n)
n (x) (notice that’s the end of derivatives

because fn is a polynomial of degree 2n). From our last two facts about f , notice F (0) = F (π) ∈ Z and
F + F ′′ = f .

All that is basically our set-up. And now for the finish . . . .
And now we use some different ideas to finish. We’re going to be focused on f sinx. Consider

F ′(x) sinx− F (x) cosx Now notice that

(F ′(x) sinx−F (x) cosx)′ = F ′′(x) sinx+F ′(x) cosx−F ′(x) cosx+F (x) sinx = (F ′′(x)+F (x)) sinx = f sinx

And this is a good set up for integrating f sinx. So, now we see∫ π

0

f sinxdx =
∫ π

0

(F ′ sinx−F cosx)′dx = [F ′(π) sinπ−F (π) cosπ]−[F ′(0) sin 0−F (0) cos 0] = 0+F (π)−0+F (0) ∈ Z

But
∫ π
0
fn(x) sinxdx ≤

∫ π
0
πnpn

n! dx ≤ πn+1pn

n! Now, for the first time of all this, remember that n is a variable.
Eventually, because factorial grows faster than any exponential (in this case because n > πp) there is a n
such that πn+1pn

n! < 1. But we have both that this integral is an integer, and also that it is strictly between
0 and 1. This is our contradiction, and finally, we have our goal π is, as we always say, irrational. And we
probably would’ve never thought to do any of this, but now we know it is true, and we know that we have
seen it - and we’re not just trusting authority.


