Two Famous Irrational Numbers

First we'll prove that e is irrational. Notice at least that $2<e<3$, so e is not an integer. Like all good irrational proofs, we begin by assuming $e=\frac{p}{q}$ with $q \geq 2$ (here is where we use that e is not an integer). What definition are we using for e ? This one:

$$
\frac{p}{q}=e=\sum_{n=0}^{\infty} \frac{1}{n!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots
$$

Now let's multiply by $q!$. Notice the left-hand-side is then an integer
$p(q-1)!=q!+q!+q \cdots 4 \cdot 3+q \cdots 5 \cdot 4+\cdots+q(q-1)+q+1+\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\frac{1}{(q+1)(q+2)(q+3)}+\cdots$
Let's focus on the part after $\cdots+q+1$ which is not obviously an integer. Recall $q \geq 2$. So, $q+1 \geq 3$ and all others as well.

$$
\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\frac{1}{(q+1)(q+2)(q+3)}+\cdots \leq \frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\cdots
$$

This is a geometric series, which converges to the sum of $\frac{\frac{1}{3}}{1-\frac{1}{3}}=\frac{1}{2}$
So, the left hand side is an integer, and the right hand side is definitely not. This is a contradiction.
This idea generalises nicely using power series. The same reasoning will prove that $e^{\frac{p}{q}}, \sin \frac{p}{q}, \cos \frac{p}{q}$ are all irrational.

So, now the real one. Here is the famous result that π is irrational. As should be expected we begin by supposing $\pi=\frac{p}{q}$. But that's where it stops being predictable. And here we go to the interesting part. Consider this function $f_{n}=\frac{x^{n}(p-q x)^{n}}{n!}$. Because $\pi=\frac{p}{q}$, there are several useful ways we can rewrite this function:

$$
f_{n}=\frac{x^{n}(p-q x)^{n}}{n!}=\frac{x^{n}(q \pi-q x)^{n}}{n!}=\frac{x^{n} q^{n}(\pi-x)^{n}}{n!}=\frac{x^{n}\left(p-\frac{p}{\pi} x\right)^{n}}{n!}=\frac{x^{n} p^{n}\left(1-\frac{1}{\pi} x\right)^{n}}{n!}
$$

We'll have opportunity to think about several of these versions, but it's all the same function. As always in mathematics - the more choices you have, the more we can do with it.

Now, let's notice some things.

- $n!f$ is a polynomial with integer coefficients.
- $n!f(\pi-x)=(\pi-x)^{n}(p-q(\pi-x))^{n}=\left(\frac{p}{q}-x\right)^{n}\left(p-q\left(\frac{p}{q}-x\right)\right)^{n}=\left(\frac{p-q x}{q}\right)^{n}(p-p+q x)^{n}=$ $(p-q x)^{n}\left(\frac{q x}{q}\right)^{n}=(p-q x)^{n} x^{n}=f(x) n!$
- So, $f^{(n)}(x)=(-1)^{n} f^{(n)}(\pi-x)$
- If $0 \leq x \leq \pi$ then $0 \leq f(x) \leq \frac{\pi^{n} p^{n}}{n!}$ using the last version of f
- For $j<n, f^{(j)}(0)=f^{(j)}(\pi)=0$
- For $j \geq n, f^{(j)}(0)=(-1)^{j} f^{(j)}(\pi) \in \mathbb{Z}$

Now let $F_{n}(x)=f_{n}(x)-f_{n}^{\prime \prime}(x)+f_{n}^{(4)}(x)-f_{n}^{(6)}(x)+\cdots+(-1)^{n} f_{n}^{(2 n)}(x)$ (notice that's the end of derivatives because f_{n} is a polynomial of degree $2 n$). From our last two facts about f, notice $F(0)=F(\pi) \in \mathbb{Z}$ and $F+F^{\prime \prime}=f$.

All that is basically our set-up. And now for the finish
And now we use some different ideas to finish. We're going to be focused on $f \sin x$. Consider $F^{\prime}(x) \sin x-F(x) \cos x$ Now notice that
$\left(F^{\prime}(x) \sin x-F(x) \cos x\right)^{\prime}=F^{\prime \prime}(x) \sin x+F^{\prime}(x) \cos x-F^{\prime}(x) \cos x+F(x) \sin x=\left(F^{\prime \prime}(x)+F(x)\right) \sin x=f \sin x$
And this is a good set up for integrating $f \sin x$. So, now we see
$\int_{0}^{\pi} f \sin x d x=\int_{0}^{\pi}\left(F^{\prime} \sin x-F \cos x\right)^{\prime} d x=\left[F^{\prime}(\pi) \sin \pi-F(\pi) \cos \pi\right]-\left[F^{\prime}(0) \sin 0-F(0) \cos 0\right]=0+F(\pi)-0+F(0) \in \mathbb{Z}$
But $\int_{0}^{\pi} f_{n}(x) \sin x d x \leq \int_{0}^{\pi} \frac{\pi^{n} p^{n}}{n!} d x \leq \frac{\pi^{n+1} p^{n}}{n!}$ Now, for the first time of all this, remember that n is a variable. Eventually, because factorial grows faster than any exponential (in this case because $n>\pi p$) there is a n such that $\frac{\pi^{n+1} p^{n}}{n!}<1$. But we have both that this integral is an integer, and also that it is strictly between 0 and 1. This is our contradiction, and finally, we have our goal π is, as we always say, irrational. And we probably would've never thought to do any of this, but now we know it is true, and we know that we have seen it - and we're not just trusting authority.

