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56. Calculate the volume of the solid obtained when the
triangle with vertices (2,5), (6, 1), and (4, 4) is rotated
about the line x = —3,

57.  Calculate the volume obtained when the region outside
the square {(x, y): lx| <1, 1y| < 1} and inside the

circle {(x, y):x2 4+ y? < 4} is rotated about the line
=17, }

~ 58. Asolid has the ellipse x* + 4y2 = 16 as its base. The

vertical slices parallel to the line Y=
triangles. Find the volume.

59. The base of a solid &S is the disk x2 + y2 < 25. For each
k € [=5, 5], the plane through the line x = £ and

perpendicular to the Xy-plane intersects S in a square.
Find the volume of S.

2. are equilateral

- 60. A solid has as its base the region bounded by the

parabola x — y? = —8 and the left branch of the
hyperbola x* — y2 — 4 — 0. The vertical slices
perpendicular to the x-axis are squares. Find the
volume of the solid,
Old Boniface he took his cheer,
Then he drilled a hole in a solid sphere
Clear through the center straight and strong,
- And the hole was just ten inches long.
~ Now tell us, when the end was gained,
What volume in the sphere remained.
Sounds like you’ve not been told enough,
But that’s all you need; it’s not too tough.
open cylindrical beaker with circular base has
eight L and radius 7. It is partially filled with a volume
'V of a fluid. Consider the parameters L, 7, and V to be
constant. The axis of symmetry of the beaker is along
 the positive y-axis, and one diameter of its base is along
\”}he X-axis. When the tank is revolved about the y-axis
th angular speed w, the surface of the fluid assumes a
shape that is the paraboloid of revolution that results
en the curve

w’x?

Vi="h+

Al a )

is revolved about the y-axis. This formula is valid for
angular speeds at which the surface of the fluid has no
yet touched the base or the mouth of the beaker. The
number 4 = h(w) is in the interval [0, V /(wr?)] and
depends on w. (When ¢ — 0,h =V /)(nr?). As w
increases, / decreases.)
a.  Find a formula for h(w).
b. At what value ws of w does spilling begin,
assuming that 4(w) > 0 for @) < ws?

¢. At what value wp of w does the surface touch the

bottom of the beaker, assuming that spilling does
not occur for w < wy?

As w increases, does the surface of the fluid touch

the bottom of the beaker or the mouth of the
beaker first?
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63. The region between the graphs of y = x exp(x) and

64.

65.

66.

imate the length of a curve by a sum
an integral that is used to calculate
analogous ideas to calculate the are

Y = /X is rotated about the y-axis. Use Simpson’s Rule
to calculate the resulting volume to four decimal places.
The region below the graph of y = exp(—x2),
—1 < x <1, is rotated about the x-axis. Use Simpson’s
Rule to calculate the resulting volume to four decimal
places.
A flashlight reflector is made of an aluminum alloy that
has mass density 3.743 g/cm?. The reflector occupies
the solid region obtained when. the region bounded by
Y =2530/x,y = 2.530/x +0.300, x = 0, and
X = 2.5 cm is rotated about the x-axis. Sketch the cross
section of the solid in the Xy-plane. What is its mass?

The equation of the Gateway Arch in St. Louis,
Missouri, is

Yy =693.8597 — 34.38365(exp(kx) + exp(—kx))

for k£ = 0.0100333 and —299.2239 < x < 299.2239
where both x and y are measured in feet. Rotate this

curve about its vertical axis of symmetry and compute
the resulting volume.

8.2, Arc Length and Surface Area

Y a sum of areas of rectangles, so can we approx-
of lengths of line segments. This process leads to

the length of a graph of a function. We can apply
a of a surface of revolution,



