Lab 25: Differential Equations and
Euler’s Method

Goals

e To illustrate differential equations as a modeling tool and as a major application
of calculus.

e To solve differential equations numerically by Euler’s method.

e To investigate how the accuracy of approximate solutions depends on the step
size.

Before the Lab

One of the major applications of calculus involves the formulation and solution
of differential equations that arise in many fields of study. An example from physics,
well supported by experimental data, is a model for radioactive decay. This model
says that if A(t) denotes the level of radioactivity of a substance at time ¢, then the
rate of change in A(?) is proportional to A(¢) itself. Let r denote the proportionality
constant. The value of this decay constant will depend on the particular radioactive
material. Because we are modeling decay, dA/dt will be negative. By requiring
r > 0, we get the differential equation

dA

— = —rA(%).

@ = Al
If we know the value of A at ¢ = 0, often written 4(0) = Ay, we have what is
known as an initial-value problem. General theorems from the theory of differential
equations assure us that virtually any reasonable initial-value problem will have a
solution and that the solution will be unique. This will certainly be true for the

differential equations we encounter in this lab.

1. a. Think about a family of functions whose derivatives are just themselves times
a multiplicative constant. Now guess a solution A for the above differential
equation that models radioactivity decay.

b. Check that any constant multiple of a solution to the above differential
equation is also a solution. Use the initial condition 4(0) = A to determine
the constant multiple. Put your results together to record the unique
function A that satisfies the initial-value problem.
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Let us now try FEuler’s method in 2 slightly more complicated situation. Suppose

the rate of growth of an algae population depends on the number of algae
cells and the temperature. Specifically, suppose a biologist determines that the

population P(t) at time t satisfies the initial-value problem

d
22— o0sP()(2+ sen(),  P(0)= 45000,

The factor 2 + 5sin(Ft) has a period of 24 to model the daily temperature
fuctuation when t is measured in hours.
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