Lab 23: Radius of Convergence for
Power Series

Goals

e To obtain graphical evidence for the interval of convergence of a power series.

e To estimate the radius of convergence visually for selected power series.

e To see the radius of convergence as a function of the center about which the

Taylor series is expanded.

Before the Lab

o<
A series of the form Zan(x — ¢)" is called a power series centered at c.
n=0
Associated with any such series is its intervel of convergence:
interior to this interval, the series converges; for all values of z outside this interval,
the series diverges. For the purposes of this lab, we ignore the behavior of the
series for values of z at the endpoints of this interval. The constant c lies at the
center of this interval. The distance from c to either endpoint is called the radius
of convergence of the series. Your textbook illustrates how to use the root test and
the ratio test to determine this radius precisely for certain series. The purpose of
this lab is to give you a graphical context for these analytical facts.

for all values of z

1. Use the techniques developed in your textbook to compute the radius of
convergence for each of the series below:

a. 5._9: 2"(z — 2)"
n=0

?(z —1)**!

* (—1
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tOfne cif the mo.st- important features of power series is their ability to repre-
sent familiar functions over their intervals of convergence. If the function f has

. . w
derivatives of all orders at some point ¢, then we can form the series an(z —c)"
E oz —
F™(e) -
where a, = is i 3
n syt This is called the Taylor series for f centered at c. For most

fu]ilctﬁlns rI]‘” that you are familiar with (and for all but one of the functions in this
ab), the Taylor series ?vﬂl converge to f(z) for all values of z within the interval of
convergence. The partial sums for this series are polynomials of degree n:

pn(z) =ao +a1(z —c)+ az(z —c)®> + -+ + an(z — )™

In most.of the standard cases, for values of z within the interval of convergence
pn(z) will be a good approximation for f(z) when n is large enough. For values’

of z outside the interval of conver i
gence, py(z) is usually a cimati
f(z), no matter how large n is. o @ poor spproximation for

For example, the Tayl i ili i
| » o (_ft)}; (or se1r17c;i 1for the familiar natural logarithm function
centered at 1 is Z z—1)
o n+1 '

of this series in Problem 1b above. Fi ;
. Figure 1
onto the graph of y = Inz.. gure 1 superimposes the graph of y = pis(z)

You computed the radius of convergence

--- p(x)forn=16

Ei _ . .
igure 1: The natural logarithm function and its 16th Taylor approximation
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Notice that pie(z) represents In z pretty well over the interval of convergence, but

that it pulls away sharply outside of that interval.

he z-axis in Figure 1 on which p1¢ seems to agree with

2. Highlight the interval on t

the logarithm function.
1)n 1132 n+1

o0
. (=
. . 0 N —
The Taylor series for the arctangent function centered at 0 1s nzz:o ot 1

You computed its radius of convergence in Problem 1c. The figure below superim-

poses the graph of y = p1s(x

) onto the graph of y = arctanz.

1.5
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--- px)forn=15

Figure 2: The arctangent function and its 15" Taylor approximation

3. Highlight the interval on the z-axis in Figure 2 on which p1s seems to agree with
| the arctangent function. How does this compare with the radius of convergence

you computed in Problem 1c?
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In the Lab

In the problems that follow, you will be asked to produce Taylor polynomials
and to superimpose their graphs onto those of the functions they represent. We
will consistently use p, to denote the n*" degree Taylor polynomial for a function
f centered at a point c. In each case, you will be asked to determine the radius of
convergence for the associated Taylor series and to support your conclusion with
graphical evidence similar to that above.

4. Let f(z) =Inz and c = 2.

o -1 n—1 — 2"
a. The Taylor series for f centered at ¢ = 2 is In(2) + Z (1) (2 —2) .

n2n
n=1

Write the first four terms of this series to make sure you see the pattern.

b. Use your computer to produce ps centered at 2 for f(z) = Inz. Check that
the coefficients agree with the ones you recorded for ps in part a. In the
viewing rectangle [0,5] x [-10,2] plot both y = Inz and y = p3(z). Also
have your computer generate pg and add its graph to the screen. Copy your
graphs onto your data sheet. Be sure to label each curve and to indicate
the units in the z and y directions. On the basis of this graphical evidence,
highlight the interval of convergence in your sketch.

c. Compute the radius of convergence for this series and discuss the extent to
which it agrees with the graphical evidence.

5. Again let f(z) = lnz. This time we will vary the value of c.

a. Use your computer to find pr centered at ¢ = 5. Plot it along with y =Inz
in the rectangle [0,15] x [—10, 5]. Note the apparent interval of convergence.
Plot p, for several larger values of n to get a feeling for the behavior of these
polynomials over the interval of convergence. When you have obtained a
picture that illustrates your idea of the interval of convergence, copy it onto
your data sheet, making sure to label each curve. Explain why this picture
supports your conclusion.

b. By now you have seen that the radius of convergence changes when the point
c changes. Experiment with several other positive values of ¢. How does the
radius of convergence seem to depend upon the value of ¢?
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Let f(z) = ¥/1+ 2 and consider the Taylor series for f centered at ¢ = 0, at

c=1,and at ¢ = —2.

a. Use the techniques of Problem 4 to estimate the radius of convergence for
the Taylor series of f when centered at ¢ =0, at ¢ = 1, and at ¢ = —2.

b. How does the radius of convergence seem to depend upon c for this function?

What similarities between the graph of y = 1 + z near ¢ = —1 and the
graphof y =Inz nearz =0 might account for the dependence you observe?

Let f(z) = arctanz.

a. The arctangent function and all of its derivatives are perfectly well-behaved
for every real value of z. Nevertheless, the radius of convergence is finite.
When ¢ = 0, you have already seen that the radius is 1. Use the techniques
established above to estimate the radii of convergence when ¢ = 1 and when

c=2.

b. Estimate the radii of convergence for other values of ¢ between —2 and 2.
Record your data as points on a graph showing the radius of convergence as
a function of the location of the center.

Further Exploration

8. This problem introduces a function whose Taylor series converges everywhere,

but not to the value of the function. Let

e_l/xz, for z # 0,
f) = {0, for x = 0.
a. Uée the computer to sketch a graph of this function on the interval [—1,1].
For which values of ¢ does f(z) appear to be 07 For which values of z does
f(z) actually equal 07

b. It appears that f'(0) = 0. Sketch the graph of f'. What does f"(0) appear
to be? Use your computer to derive and then sketch some of the higher
derivatives of f. What does f(®(0) appear to be in each case?

c. In this case, appearances are not deceiving. It is a remarkable fact that f
has derivatives of all orders at 0, and f(™(0) = 0 for all n. Given this fact,
what is the Taylor series for f centered at ¢ = 07 What is the interval of
convergence for this series? For which values of = does the series converge

to f(z)?

Lab 23: Radius of Convergence for Power Series 129

9.

10.

Obtain a formula in terms of n for the coefficient of (z —¢)™ in the Taylor series
for f(z) = Inz. Use this formula to determine the radius of convergence for this
Taylor series. How does the radius of convergence depend on ¢? How does this
analytical result compare with the graphical results you found in Problem 47

Although the derivatives of f(z) = arctanz are well-behaved for all real
numbers, the same cannot be said for all complex numbers. For which complex

numbers z is the function f(z) =

" undefined? How might this account
for your results in Problem 67



