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222 Assignment 6 Solutions

By the way - the arrows do not belong. That is an error in the book, it’s a difficult one to fix.
§3.2 25 & 27. I think I’m doing 27 first. y′ = sin2 y. So, what is noteworthy here? y′ doesn’t depend on

x (or t). So, it should be the same across each row that has the same y values. Values are never negative.
And values cycle, starting a zero for y = 0, the x-axis and increasing to one as we go up (and down) then
back to zero. So, that’s some of what to look for. Looking at our options, zero on the x-xis is common, but
only option (d) is constant across rows. So, apparently all we needed to see was that this didn’t depend on
t. That’s pretty simple. It’s also the only one with no negative slopes. Ok, so that was easy. You might say
... some of these look as if the slope is greater than 1, especially on the top and the bottom. Notice carefully
that the scale is larger on the x-coordinates than the y coordinates, so this compressed in x which makes it
look larger. So, what about 25? y′ = −t cos y. Ok, one thing I see here is that for t = 0 the slope is zero.
So, zero on the y-axis. And not always zero on the x-axis, because for t = 1, y = 0 we get y′ = −1. That
alone narrows our choices to (e), because all the others are constantly zero on the x-axis. Of note, something
interesting is happening around y = 1.5, which is reasonable since π/2 is close to 1.5, where cos(π/2) = 0.
This looks good. We didn’t need to notice much to choose from these options.

§3.2 32. Because we want 5 steps to go from 0 to 1, we will take h = ∆x = 0.2. We start at (0, 3). We
are given that y′ = y + t2. So y′(0, 3) = 3, and y(0.2) = 3(0.2) + 3 = 3.6. So, our second point is (0.2, 3.6).
We use this point to find our new derivative, y′(0.2, 3.6) = 3.6 + (0.2)2 = 3.64. And we then take another
step, y(0.4) = 3.64(0.2) + 3.6 = 4.328. Now we switch over to the computer and let it do some work for us.
For it we will call our equation y′ = y + x2, set the start and ∆x. The machine tells us our second points
is (0.4, 4.33), so apparently it is rounding, which adds yet another source of error to the approximation.
We now see what the next 3 steps are, leading to y(1). The machine says the next points are (0.6, 5.23),
(0.8, 6.34) and finally (1, 7.74). From the graph it looks as if our approximation is a bit below the solution.
In the problem we are told that the exact solution is y = 5et − 2− t2 − 2t (I sincerely have no idea how one
finds that, but differential equations are the furthest from my speciality - it does look easy to check. I’ll give
+1 to the first person who emails me a check that this solution works.). This is easy to compute at t = 1,
we get 5e− 2− 1− 2 = 5e− 5. This is about equal to 8.5914 (a little more). It looks as if Euler’s method is
having trouble keeping up, which is natural with such a rapidly growing function.

§3.3 8. dy
dt = y cos(3t+ 2). We separate variables, 1

y
dy
dt = cos(3t+ 2). Now we integrate both sides with

respect to t to get
∫

1
y
dy
dt dt =

∫
cos(3t + 2)dt. The first one collapses by substitution as always and we get∫

1
ydy =

∫
cos(3t + 2)dt. So, now we integrate to get ln y = 1

3 sin(3t + 2) + C. Lastly we solve for y by

exponentiating both sides. This produces y = e
1
3 sin(3t+2)+C = e

1
3 sin(3t+2)eC = ke

1
3 sin(3t+2) for a constant k

(since C wasn’t very important). In hindsight, this solution should look good with the original differential
equation.

§3.3 48. Leaves! Last year I worked with two groups and we came up with a fascinating approximation.
Independently we both found that there are about two billion (that’s 2,000,000,000) leaves in the village of
Geneseo every year. Wow. No wonder it takes a lot of work to clean them up each autumn. Anyway, they
do decay, but not immediately. I’m going to try using L as a variable for leaf litter, (capital to avoid issues
with the lower case as a variable). I’m using units of g/cm2 for L. dL

dt = 2 − 0.9L. Notice that the rate of
change is that it grows by 2 g/cm2 each year, while 90% of what is there (i.e. of L decays). We now can
solve this equation; we separate variables, to get 1

2−0.9L
dL
dt = 1. We integrate both sides, collapsing the left

to get
∫

1
2−0.9LdL =

∫
dt and hence − 1

0.9 ln(2 − 0.9L) = t + C. Exponentiating and renaming the constant

we get 2 − 0.9L = ke−0.9t. We may then solve for L to get L = 2−ke−0.9t

0.9 . We are asked to assume that at

t = 0, L = 0, substituting both gives: 0 = 2−k
0.9 , so k = 2, hence L = 2−2e−0.9t

0.9 . Does this approach a steady
value? Yes, if we take the limit of this as t goes to infinity we get 2

0.9 . So, after many years there will be
around 2 2

9 g/cm2 before the leaves fall again. (Sure, if someone different from the check above sends me full
work checking this differential equation solution, I will again give +1.).

Population project #11. For comparison, I will try my hand at doing this. Answers vary. I’m looking at
a scatter plot of the data. I’m going to use 1900, 1970 and 2010 as my data points. From what most of you
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said, it sounded as if you were taking 1790 as 0 and working in units of years. So, I will be do that. So, I am
using p(110) = 76212168, p(180) = 203302031 and p(220) = 308745538. I think the a, b, c form is going to be
easier to work with, but first dividing all by eat so that there’s only one a, so off I go: 76212168 = b

c+e−110a ,

203302031 = b
c+e−180a and 308745538 = b

c+e−220a . I will divide the first two by each other to and same with
the last two to get:

2.66758 =
c+ e−110a

c+ e−180a
1.51865 =

c+ e−180a

c+ e−220a

Notice that we’ve already eliminated b. Also notice that this is all modeling, so my calculator and I decide
to round after 5 decimal places. That’s a step. We can multiply out the fractions, and gather the c terms to
one side to get:

1.66758c = e−110a − 2.66758e−180a 0.51865c = e−180a − 1.51865e−220a

Next we can divide these two equations by each other, to remove c entirely. We will divide the first by the
second, and get an equation only involving a:

3.21176 =
e−110a − 2.66758e−180a

e−180a − 1.51865e−220a

Multiply out the fraction again to get

3.21176e−180a − 4.87754e−220a = e−110a − 2.66758e−180a

Gathering on one side
4.87754e−220a − 5.87934e−180a + e−110a = 0

And dividing out e−110a

4.87754e−110a − 5.87934e−70a + 1 = 0

Either plotting or using a numerical solver gives a = 0.017825. Now, going back to
1.66758c = e−110(0.017825) − 2.66758e−180(0.017825) gives c = 0.019753, and now we can go back to one of the
first equations, say 76212168 = b

0.019753+e−110(0.017825) to get b = 12232600.

Ok, ok, that gives us p(t) = 12232600
0.019753+e−0.017825t . As t → ∞, we get a limiting capacity of 619, 277, 000

This model gives p(230) = 336, 710, 000 for 2020, which compares to the actual value of 329, 500, 000
and gives p(260) = 415, 172, 000 for 2050. Taking the second derivative and finding where it is zero gives an
inflection at t = 220, or 2010, which looks believable from the graph originally.


