222 Assignment 3 Solutions

§2.4 20. $\int \frac{2x^2+4x+22}{x^2+2x+10} dx$. I'm apparently not very good at avoiding problems with solutions in the text. Well, as they said the first step is to divide to get the numerator degree lower: $(2x^2+4x+22) \div (x^2+2x+10) =$ $2+\frac{2}{x^2+2x+10}=2+\frac{2}{x^2+2x+1+9}=2+\frac{2}{(x+1)^2+9}=2+\frac{2}{9(\sqrt{[x+1)}/3]^2+1}$. Now we've done enough manipulations to integrate, $\int \frac{2x^2+4x+22}{x^2+2x+10} dx = \int 2 + \frac{2}{9(\sqrt{x+1})^3} dx = 2x + \frac{2}{3} \tan^{-1}(\frac{x+1}{3}) + C$. Notice that we compensate for the 3 in the denominator by multiplying by 3, hence canceling one from 9.

§2.4 27. $\int \frac{x^2}{x^3-x^2+4x-4} dx$. I was hoping it factored to $(x-1)(x-2)(x+2)$, but not quite, alas. Apparently x^3-x^2+4x-4 it's $(x-1)(x^2+4)$. So we set out partial fractions $\frac{x^2}{x^3-x^2+4x-4} = \frac{A}{x-1} + \frac{Bx+C}{x^2+4}$. We clear fractions and find $x^2 = A(x^2 + 4) + (Bx + C)(x - 1)$. $x = 1$ produces $1 = 5A$, so $A = \frac{1}{5}$. Gathering equations by power (mixing my methods here), squares: $1 = A + B$, $0 = C - B$ (oh, so $C = B$, that's nice), and $0 = 4A - C$ (and so $C = 4A$ also pretty workable). So, altogether we have $A = \frac{1}{5}$, $C = \frac{4}{5}$, $B = \frac{4}{5}$. Reassembling: $\int \frac{x^2}{x^3-x^2}$ $\frac{x^2}{x^3-x^2+4x-4}dx = \int \frac{1/5}{x-1} + \frac{4/5x}{x^2+4} + \frac{4/5}{x^2+4}dx = \frac{1}{5}\ln(x-1) + \frac{2}{5}\ln(x^2+4) + \frac{2}{5}\tan^{-1}(\frac{x}{2}) + C.$

§2.5 35. $\int \frac{dx}{1+\sin x}$. I want to get that sum out of the denominator, so I'll multiply numerator and denominator by $(1 - \sin x)$ to get $\cos^2 x$ and something we can work with. Let's see: $\int \frac{1-\sin x}{1-\sin x} \frac{dx}{1+\sin x}$ $\int \frac{1-\sin x}{\cos^2 x} dx = \int \sec^2 x - \frac{\sin x}{\cos^2 x} dx$. The first is nice, for the second, let $u = \cos x$, this then gives $\int \frac{dx}{1+\sin x} =$ $\tan x-1/(\cos x)+C=\tan x-\sec x+C$. (for some detail: there are 3 negatives that combine together to give the final $-\sec x$, one is from $\int \sec^2 x - \frac{\sin x}{\cos^2 x} dx$, one is from $du = -\sin x dx$ and one is from $\int \frac{du}{u^2} = -\frac{1}{u} + C$. According to the old rule, three negatives make a negative.)

§2.6 18 (use *Simpson's* Rule). $\int_0^1 \frac{dx}{1+x^2} = [\tan^{-1}x]_0^1 = \tan^{-1}(1) = \frac{\pi}{4}$. Simpson's rule with $n = 4$, just gives us two parabolas, 14241, so we add $\frac{1}{12} \left(\frac{1}{1+0^2} + \frac{4}{1+(1/4)^2} + \frac{2}{1+(1/2)^2} + \frac{4}{1+(3/4)^2} + \frac{1}{1+1^2} \right) = \frac{8011}{10200}$ which is a pretty good approximation to $\frac{\pi}{4}$.

§2.6 45. Tables are where numerical integration excels. We have no way of computing anti-derivatives from a table, but numerical integration does just fine. Trapezoid gives us $\frac{100}{2}(125 + 2(125 + 120 + 112 + 90 +$ $95 + 88 + 75 + 35 + 0 = 89250$ m².

§2.7 40 $\int_{-27}^{1} \frac{dx}{x^{2/3}}$. The problem is at $x = 0$ so we divide into two integrals: $\int_{-27}^{1} \frac{dx}{x^{2/3}} = \int_{-27}^{0} \frac{dx}{x^{2/3}} + \int_{0}^{1} \frac{dx}{x^{2/3}}$. Now since the function is not defined for zero, we'll need to sneak up to it on both sides, using two separate limits. This gives us: = $\lim_{t\to 0^-} \int_{-27}^t \frac{dx}{x^{2/3}} + \lim_{s\to 0^+} \int_s^1 \frac{dx}{x^{2/3}}$. Fortunately the integrals are easy and the same, therefore: $= \lim_{t\to 0^-} [3x^{1/3}]_{-27}^t + \lim_{s\to 0^+} [3x^{1/3}]_s^1 = \lim_{t\to 0^-} 3t^{1/3} - (-9) + 3 - \lim_{s\to 0^+} 3s^{1/3} =$ $0 - (-9) + 3 - 0 = 12.$

§2.7 46 $\int_1^4 \frac{dx}{\sqrt{x^2-1}}$ The problem is at $x=1$, so we need a limit to get there: $\lim_{t\to 1^+} \int_t^4 \frac{dx}{\sqrt{x^2-1}}$. This time we've got more work to do on the integral. I'm going to focus on the integral for a while then come back to the limits (in both meanings): $\int \frac{dx}{\sqrt{x^2-1}}$. Let $x = \sec \theta$ so that we can undo the square root. $\sqrt{x^2 - 1} = \sqrt{\sec^2 \theta - 1} = \sqrt{\tan^2 \theta} = \tan \theta$. For that to work we need $dx = \sec \theta \tan \theta d\theta$. So, $\int \frac{dx}{\sqrt{x^2-1}} = \int \frac{\sec \theta \tan \theta d\theta}{\tan \theta} = \int \sec \theta d\theta = \ln(\sec \theta + \tan \theta) + C = \ln(x + \theta)$ √ $(x^2-1) + C$. Ok, now let's bring back those limits, $\lim_{t \to 1^+} \int_t^4 \frac{dx}{\sqrt{x^2-1}} = \lim_{t \to 1^+} [\ln(x +$ √ $(x^2-1)|_t^4 = \ln(4+\sqrt{15}) - \lim_{t\to 1^+} [\ln(t+\sqrt{15})]$ √ $\sqrt{t^2-1}$) = $\ln(4+\sqrt{15}) - \ln 1 = \ln(4+\sqrt{15})$

Wow, solutions in one page. Probably good given all we've got happening.