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222 Assignment 3 Solutions

§2.4 20.
∫

2x2+4x+22
x2+2x+10 dx. I’m apparently not very good at avoiding problems with solutions in the text.

Well, as they said the first step is to divide to get the numerator degree lower: (2x2+4x+22)÷(x2+2x+10) =
2 + 2

x2+2x+10 = 2 + 2
x2+2x+1+9 = 2 + 2

(x+1)2+9 = 2 + 2
9({[x+1)/3]2+1} . Now we’ve done enough manipulations

to integrate,
∫

2x2+4x+22
x2+2x+10 dx =

∫
2 + 2

9({[x+1)/3]2+1}dx = 2x+ 2
3 tan

−1(x+1
3 ) +C. Notice that we compensate

for the 3 in the denominator by multiplying by 3, hence canceling one from 9.

§2.4 27.
∫

x2

x3−x2+4x−4dx. I was hoping it factored to (x−1)(x−2)(x+2), but not quite, alas. Apparently

it’s (x− 1)(x2 + 4). So we set out partial fractions x2

x3−x2+4x−4 = A
x−1 + Bx+C

x2+4 . We clear fractions and find

x2 = A(x2 + 4) + (Bx + C)(x − 1). x = 1 produces 1 = 5A, so A = 1
5 . Gathering equations by power

(mixing my methods here), squares: 1 = A + B, 0 = C − B (oh, so C = B, that’s nice), and 0 = 4A − C
(and so C = 4A also pretty workable). So, altogether we have A = 1

5 , C = 4
5 , B = 4

5 . Reassembling:∫
x2

x3−x2+4x−4dx =
∫ 1/5

x−1 + 4/5x
x2+4 + 4/5

x2+4dx = 1
5 ln(x− 1) + 2

5 ln(x
2 + 4) + 2

5 tan
−1(x2 ) + C.

§2.5 35.
∫

dx
1+sin x . I want to get that sum out of the denominator, so I’ll multiply numerator and

denominator by (1 − sinx) to get cos2 x and something we can work with. Let’s see:
∫

1−sin x
1−sin x

dx
1+sin x =∫

1−sin x
cos2 x dx =

∫
sec2 x − sin x

cos2 xdx. The first is nice, for the second, let u = cosx, this then gives
∫

dx
1+sin x =

tanx−1/(cosx)+C = tanx−secx+C. (for some detail: there are 3 negatives that combine together to give
the final − secx, one is from

∫
sec2 x− sin x

cos2 xdx, one is from du = − sinxdx and one is from
∫

du
u2 = − 1

u +C.
According to the old rule, three negatives make a negative.)

§2.6 18 (use Simpson’s Rule).
∫ 1

0
dx

1+x2 = [tan−1 x|10 = tan−1(1) = π
4 . Simpson’s rule with n = 4, just

gives us two parabolas, 14241, so we add 1
12

(
1

1+02 + 4
1+(1/4)2 + 2

1+(1/2)2 + 4
1+(3/4)2 + 1

1+12

)
= 8011

10200 which

is a pretty good approximation to π
4 .

§2.6 45. Tables are where numerical integration excels. We have no way of computing anti-derivatives
from a table, but numerical integration does just fine. Trapezoid gives us 100

2 (125+2(125+120+112+90+
95 + 88 + 75 + 35) + 0) = 89250 m2.

§2.7 40
∫ 1

−27
dx
x2/3 . The problem is at x = 0 so we divide into two integrals:

∫ 1

−27
dx
x2/3 =

∫ 0

−27
dx
x2/3 +

∫ 1

0
dx
x2/3 .

Now since the function is not defined for zero, we’ll need to sneak up to it on both sides, using two separate

limits. This gives us: = limt→0−
∫ t

−27
dx
x2/3 + lims→0+

∫ 1

s
dx
x2/3 . Fortunately the integrals are easy and the

same, therefore: = limt→0− [3x
1/3|t−27 + lims→0+ [3x

1/3|1s = limt→0− 3t1/3 − (−9) + 3 − lims→0+ 3s1/3 =
0− (−9) + 3− 0 = 12.

§2.7 46
∫ 4

1
dx√
x2−1

The problem is at x = 1, so we need a limit to get there: limt→1+
∫ 4

t
dx√
x2−1

. This

time we’ve got more work to do on the integral. I’m going to focus on the integral for a while then
come back to the limits (in both meanings):

∫
dx√
x2−1

. Let x = sec θ so that we can undo the square

root.
√
x2 − 1 =

√
sec2 θ − 1 =

√
tan2 θ = tan θ. For that to work we need dx = sec θ tan θdθ. So,∫

dx√
x2−1

=
∫

sec θ tan θdθ
tan θ =

∫
sec θdθ = ln(sec θ + tan θ) + C = ln(x +

√
x2 − 1) + C. Ok, now let’s bring

back those limits, limt→1+
∫ 4

t
dx√
x2−1

= limt→1+ [ln(x+
√
x2 − 1)|4t = ln(4+

√
15)− limt→1+ [ln(t+

√
t2 − 1) =

ln(4 +
√
15)− ln 1 = ln(4 +

√
15)

Wow, solutions in one page. Probably good given all we’ve got happening.


