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222 Assignment 2 Solutions

§1.3 43
There’s an interesting issue here ... these curves intersect three times. Because of that we could mean

the two regions. I’m not sure if that is what is meant. It wouldn’t be much more difficult if it were. I will
presume they mean just the first intersection. But, I will set up the second one at the very end. Since I
don’t want to solve x = sin(πy2) for y, I will work in terms of y. The intersections are at 0 (I hope that’s
obvious), for one. The second one is tricky. We want sin(πy2) =

√
2y. The clue is the

√
2. We like to

hope that you recall that sin(π4 ) =
√
2
2 . Notice that if y = 1

2 , this makes both sides work out. That is our

second intersection. Beyond that remember sin(π2 ) = 1 =
√
2√
2
. See that this is satsfied if y = 1√

2
. Notice

neither of these can really be “solved”, but instead just recognised. So ... now to set up our integrals.
Again because I don’t want to invert the sine equation, I am working in terms of y which gives us horizontal
segments. Horizontal segments rotated around the x-axis produces cylinders. So we use 2πrh. The radius
is just y since it is an axis. The height is the difference of the x-coordinates. The bigger one is

√
2y and

the smaller one is sin(πy2). So the area of the cylinder is 2πy(
√
2y − sin(πy2). The range of y values for

the first region is from 0 to 1
2 . So, our integral for volume is

∫ 1
2

0
2πy(

√
2y − sin(πy2))dy. Wow, that’s a

lot of work for setup. Now to integrate. Let’s distribute, break into two integrals, and pull out constants

to get: 2
√
2π

∫ 1
2

0
y2dy −

∫ 1
2

0
2πy sin(πy2)dy. I’ve tried to leave constants where they will be useful. This

integrates to [2
√
2π 1

3y
3 + cos(πy2)|

1
2
0 (notice the substitution in the second integral). After evaluating we

get π
√
2

12 +
√
2
2 − 1. Remember at the beginning there were two regions? If you did both of them on the

problem set I will record 5/4 again (I like doing that). And, if you’re just reading this now and you’re the
first person to email me the correct set up and work for the second integral, I will record +1 for you. I like
people reading solutions. This extra is not that difficult, now that all the above work is there. Even if you
didn’t do the above work.

§1.3 49 We’re rotating around x = 4, which is a vertical line. We are told to use shells, i.e. cylinders, so
we must use a vertical segments, which means we’re working in terms of x. We’re using the circle x2+y2 = 4
which is centred at the origin and has radius 2. Therefore the range of x values is [−2, 2]. The distance
from x = 4 is 4 − x (try with x = −1 or x = 3 if you want to justify this). The height is from the
bottom to the top of the circle, i.e.

√
4− x2 − −

√
4− x2 = 2

√
4− x2. So the area of each cylinder is

2π(4 − x)2
√
4− x2. Hence the integral for the volume is

∫ 2

−2
2π(4 − x)2

√
4− x2dx. We can distribute this

to two integrals: 16π
∫ 2

−2

√
4− x2dx − 8π

∫ 2

−2
2x

√
4− x2dx. The first would be difficult, but we have some

inside information, it tells us the area of the top half off a circle of radius 2. We know that to be 1
2π2

2 = 2π.
The second integral is a bit surprising. If you think of the graph of the function, notice that it is above
the x-axis for [0, 2] and below for [−2, 0]. Those areas cancel out. I will work through the details to be

clear, but we now see the answer is 16π(2π) − 8π(0) = 32π2. For the second integral,
∫ 2

−2
2x

√
4− x2dx,

let u = 4 − x2, du = −2x, so we have
∫
2x

√
4− x2dx =

∫ √
udu = 2

3u
3/2 + C = 2

3 (4 − x2)3/2 + C, so∫ 2

−2
2x

√
4− x2dx = [ 23 (4− x2)3/2|2−2 = 2

3 (0− 0) = 0, as claimed before. It’s not only 0, it’s 0− 0.

§1.4 44 The cylinder is a cylinder. It has area 2πrh = 2π(1/4)(1/3) in2 = π
6 in2. The sphere work

seems very familiar from class. There are annoying fractions, which makes writing it difficult, but not
conceptually difficult. Remember from our work in class - this works out nicely in the end. Don’t give up.

Here we go. The circle is x2 + y2 = 1
4 . So, the function is

√
1
4 − x2. The limits are −

√
3
16 = −

√
3
4 and

1
2 . Here’s a nice idea, and something to remember - numbers are annoying and variables are nice. So, I’m
going to do this with variables and not numbers, and then use numbers as the end. So, if instead we use
√
r2 − x2 from x = a to x = b we get

∫ b

a
2π

√
r2 − x2

√
1 + [ −2x

2
√
r2−x2

]2dx =
∫ b

a
2π

√
r2 − x2

√
1 + x2

r2−x2 dx =∫ b

a
2π

√
r2 − x2

√
r2

r2−x2 dx =
∫ b

a
2πrdx = 2πr(b− a). This is basically the same as what we did in class, and

is a really fascinating fact - that the area of a section of a sphere is just proportional to its height. In any

case, from the beginning in our case we just grab the values 2π 1
2 (

1
2 − −

√
3
4 ) = π( 2+

√
3

4 ). To get the final

answer we add the part from the cylinder before, π
6 , to get π( 23 +

√
3
4 ) in2.
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§1.4 50 Ok, we need length of a parabola and length of a line segment from (0, 0) to (b2, b). The
second is merely the distance formula, and even simpler because one of the points is the origin, so it is√
b2 + b4 = b

√
b2 + 1. That’s easy work first. So, now for arc-length of parabola, we apply the arc-length

formula to x = y2, the good news here is that we can take a square root from 0 to b, i.e.
∫ b

0

√
1 + 1/(4x).

and .. so ... yep, these are problems, as we talked about in class. So, I ditched this problem and replaced it
with ...

§1.4 48. We want the arclength of f(x) = ln(sinx) from x = π/4 to 3π4. For the formula we will

need f ′(x) = cos x
sin x . And away we substitute:

∫ 3π/4

π/4

√
1 + cos2 x

sin2 x
dx. We get a common denominator (because

I’m guessing you don’t recognise the trig. identity 1 + cot2 x), =
∫ 3π/4

π/4

√
sin2 x+cos2 x

sin2 x
dx and I hope you

recognise that trig. identity =
∫ 3π/4

π/4

√
1

sin2 x
dx =

∫ 3π/4

π/4
1

sin xdx =
∫ 3π/4

π/4
cscxdx. And at this point either

you remember the most obscure trig. integral or you don’t. Here is where it comes from:
∫ 3π/4

π/4
cscxdx =∫ 3π/4

π/4
cscx( csc x+cot x

csc x+cot x )dx =
∫ 3π/4

π/4
csc2 x+csc x cot x

csc x+cot x dx. Now, either you do or don’t remember the derivatives,

they come from the quotient rule: d csc x
dx = − cscx cotx and d cot x

dx = − csc2 x. So we are well set up for

substitution u = cscx+cotx, du = − csc2 x− cscx cotxdx so we have −
∫

du
u = − ln(u)+C and our integral

equals [− ln(cscx+ cotx)|3π/4π/4 = ln(
√
2 + 1)− ln(

√
2− 1) = ln(

√
2+1√
2−1

) = ln(3 + 2
√
2).

§2.1 45 We have another question with an answer, ok. Let’s see if we can get this one to agree.
∫
x2 sinxdx.

This should be pretty straightforward, parts twice. Let f = x2 and g′ = sinxdx since differentiating f helps.
f ′ = 2xdx, g = − cosx. So,

∫
x2 sinxdx == −x2 cosx +

∫
2x cosxdx. We do it again, f = 2x, and

g′ = cosxdx, so f ′ = 2dx and g = sinx. So,
∫
x2 sinxdx = −x2 cosx+

∫
2x cosxdx = −x2 cosx+ 2x sinx−∫

2 sinxdx = −x2 cosx+ 2x sinx+ 2 cosx+C. And
∫ π/2

0
x2 sinxdx = [−x2 cosx+ 2x sinx+ 2 cosx|

∫ π/2

0
=

0 + π + 0− (−0 + 0 + 2) = π − 2. And we even agree.

§2.1 49 We want to find
∫
xn cosxdx. We let f = xn, g′ = cosxdx. Hence f ′ = nxn−1dx and g = sinx.

So,
∫
xn cosxdx = xn sinx −

∫
nxn−1 sinxdx. Wait, that’s all? Well, maybe pull the constant out of the

integral, to get: So,
∫
xn cosxdx = xn sinx −

∫
nxn−1 sinxdx = xn sinx − n

∫
xn−1 sinxdx (it’s ok if you

didn’t). Wow, that is likely the easiest question all semester.

§2.2 28
∫
sin ax cos axdx. Wow, I think I said the last one was the easiest. I feel as if this is a competition.

We’ll use substitution. Let u = sin ax, du = a cos axdx so, du
a = cos axdx. Hence,

∫
sin ax cos axdx =∫

1
audu = u2

2a + C = sin2ax
2a . That’s even less impressive than the last one because we could’ve done that in

Calc 1. Hm, is there another way? Yes, there’s lots of ’em. Here’s a different way: sin 2ax = 2 sin ax cos ax,
so

∫
sin ax cos axdx =

∫
sin 2ax

2 dx = − 1
4a cos 2ax+C. They look different. I’ll give +2 for the first person to

correctly email me why they are the same.

§2.2 32.
∫
sin2 x cos2 xdx. We’ll use cos2 x = 1+cos2x

2 and sin2 x = 1−cos2x
2 . So,

∫
sin2 x cos2 xdx =∫

( 1−cos2x
2 )( 1+cos2x

2 )dx =
∫ 1−cos2(2x)

4 dx =
∫ sin2(2x)

4 dx =
∫ 1−cos(4x)

8 dx. Finally after all that work we can

integrate, = 1
8x − sin 4x

16 + C. That was ok, this feels ... like we haven’t done as much real trig integral
practice. Well, I hope it comes in §2.3 or in the problems you pick.

§2.3 41. Find the area inside x2

4 + y2

9 = 1. Solving for y = ±3
√

1− x2

4 . The range of values are between

x = ±2. Therefore the desired integral is (top - bottom) =
∫ 2

−2
6

√
1−

(
x
2

)2
dx. So that we can take a square

root, we let x
2 = sin θ. From this, dx = 2 cos θdθ. If x = 2, 1 = sin θ, so θ = π

2 . And if x = −2,−1 = sin θ,

and θ = −π
2 We make our substitutions: =

∫ π/2

−π/2
6
√

1− sin2 θ(2 cos θ)dθ =
∫ π/2

−π/2
12 cos2 θdθ. Then we use

our identity for cos2 θ: =
∫ π/2

−π/2
6 + 6 cos 2θdθ = [6θ + sin(2θ)|π/2−π/2 = 6π. It isn’t much more work to get a

general formula for an ellipse with axes a and b. Sure, I’ll give +2 for the first person to email that to me.
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§2.3 43. Ok, we’re computing
∫

dx
x
√
x2−1

and we’re told to let x = sec θ, so we do. dx = sec θ tan θdθ.

Making substitutions gives
∫

sec θ tan θdθ
sec θ

√
sec2 θ−1

. Using sec2 θ − 1 = tan2 θ produces =
∫

sec θ tan θdθ

sec θ
√
tan2

=
∫
dθ =

θ + C = sec−1 x+ C. That wasn’t too bad, and the second one won’t be much worse.
Next we’re told to let x = csc θ, so we do. dx = − csc θ cot θdθ. Making substitutions gives

∫
− csc θ cot θdθ

csc θ
√
csc2 θ−1

.

Using csc2 θ − 1 = cot2 θ produces =
∫
− csc θ cot θdθ

csc θ
√
cot2

=
∫
−dθ = −θ + C = − csc−1 x + C. So, how do we

feel about the two answers. They look different. Here’s the important point ... what does “co” mean? It
means “of the complement”. So, two different co-inverse functions give complementary angles. I am hopeful
that you remember that two complementary angles add to π

2 . So, sec1 x + csc−1 x = π
2 . As a consequence,

sec1 x == π
2 − csc−1 x. And that almost explains it, but . . . what about the π

2 ? It is part of the C. The
answers work for any constant, and π

2 is just another constant. There you have it.

I’m glad that you picked your own problems in Chapter 2 also. I didn’t pick very challenging ones,
apparently. I hope you can do better than me. Do make sure that you find some to challenge you.


