Table of Knot Mosaics
with Mosaic Number 6 or Less


Mosaic number 5 or less


Mosaic number 6 or less


Mosaic number 7


Crossing number:

10 or less

11

12

13

14

15

16


(Click mosaic for larger view.)


When listing prime knots with crossing number 10 or less, we will use the Alexander-Briggs notation, matching Rolfsen’s table of knots. [Rolfsen]

01
31
41
51
52
61   (more)
62
63
71
72
7_3 Knot
73    (more)
74
75
76
77
8_1 Knot
81    (more)
8_2 Knot
82
8_3 Knot
83    (more)
8_4 Knot
84
8_5 Knot
85
8_6 Knot
86    (more)
8_7 Knot
87    (more)
8_8 Knot
88    (more)
8_9 Knot
89    (more)
8_10 Knot
810
8_11 Knot
811
8_12 Knot
812
8_13 Knot
813
8_14 Knot
814
8_15 Knot
815
8_16 Knot
816
8_17 Knot
817
818
819  (n)
820  (n)
821  (n)
91
92
93    (more)
94    (more)
95
96
97   (more)
98
99   (more)
910   (more)
911
912   (more)
913   (more)
914
915
916   (more)
917
918
919   (more)
920
921   (more)
922
923
924   (more)
925
926   (more)
927
928
929
930
931
932
933
934
935   (more)
936
937   (more)
938
939
940
941
942  (n)
943  (n)
944  (n)
945  (n)
946  (n) (more)
947  (n)
948  (n) (more)
949  (n)
101   (more)
102
103   (more)
104
105
106
107
108
109
1010
1011   (more)
1012
1013
1014
1015
1016
1017
1018
1019
1020   (more)
1021   (more)
1022   (more)
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034   (more)
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061   (more)
1062   (more)
1063   (more)
1064   (more)
1065   (more)
1066
1067
1068
1069
1070
1071
1072
1073
1074   (more)
1075
1076   (more)
1077   (more)
1078   (more)
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124  (n)
10125  (n)
10126  (n)
10127  (n)
10128  (n)
10129  (n)
10130  (n)
10131  (n)
10132  (n)
10133  (n)
10134  (n)
10135  (n)
10136  (n)
10137  (n)
10138  (n)
10139  (n) (more)
10140  (n) (more)
10141  (n)
10142  (n) (more)
10143  (n)
10144  (n) (more)
10145  (n)
10146  (n)
10147  (n)
10148  (n)
10149  (n)
10150  (n)
10151  (n)
10152  (n)
10153  (n)
10154  (n)
10155  (n)
10156  (n)
10157  (n)
10158  (n)
10159  (n)
10160  (n)
10161*  (n)
10162*  (n)
10163*  (n)
10164*  (n)
10165*  (n)
*These knots are listed as 10162‑10166 in Rolfsen due to the Perko Pair.

When listing prime knots with crossing number 11 or more, we use the Dowker-Thistlethwaite name of the knot. See KnotInfo for more information.

All knots with mosaic number 6 and crossing number 11:

11a43   (more)
11a44   (more)
11a46   (more)
11a47   (more)
11a58   (more)
11a59   (more)
11a106   (more)
11a107
11a139   (more)
11a140
11a165   (more)
11a166   (more)
11a179   (more)
11a181   (more)
11a246   (more)
11a247   (more)
11a339   (more)
11a340   (more)
11a341   (more)
11a342   (more)
11a343
11a364   (more)
11a367   (more)
11n71   (more)
11n72   (more)
11n73   (more)
11n74   (more)
11n75   (more)
11n76   (more)
11n77   (more)
11n78   (more)

All knots with mosaic number 6 and crossing number 12:

12a119   (more)
12a165   (more)
12a169   (more)
12a373   (more)
12a376   (more)
12a379   (more)
12a380   (more)
12a444   (more)
12a503   (more)
12a722   (more)
12a803   (more)
12a1148   (more)
12a1149   (more)
12a1166   (more)

All knots with mosaic number 6 and crossing number 13:

13a1230   (more)
13a1236   (more)
13a1461   (more)
13a4573   (more)
13n2399   (more)
13n2400   (more)
13n2401   (more)
13n2402   (more)
13n2403   (more)

References:

Heap, A.; Knowles, D. Tile Number and Space-Efficient Knot Mosaics; J. Knot Theory Ramif. 2018, 27.
Heap, A.; Knowles, D. Space-Efficient Knot Mosaics for Prime Knots with Mosaic Number 6; Involve 2019, 12.
Heap, A.; LaCourt, N. Space-Efficient Prime Knot 7-Mosaics; Symmetry 2020, 12.
Heap, A.; Baldwin, D.; Canning, J.; Vinal, G. Knot Mosaics For Prime Knots with Crossing Number 10 or Less; in preparation.
Kuriya, T.; Shehab, O. The Lomonaco–Kauffman Conjecture; J. Knot Theory Ramif. 2014, 23.
Lee, H.; Ludwig, L.; Paat, J.; Peiffer, A. Knot Mosaic Tabulation; Involve 2018, 11.
Lomonaco, S.J.; Kauffman, L.H. Quantum Knots and Mosaics; Quantum Inf. Process. 2008, 7, 85–115.
Ludwig, L.; Evans, E. An Infinite Family of Knots Whose Mosaic Number Is Realized in Non-reduce Projections; J. Knot Theory Ramif. 2013, 22.
Rolfsen, D. Knots and Links; Publish or Perish Press: Berkeley, CA, USA, 1976.


[Back to Top]