I originally created this document as a place to demonstrate how to make tables in LATEX, since that was something that came up in a recent meeting. But when we wanted a place to write a formal proof using the contrapositive, this document was convenient, and it made a good opportunity to illustrate how you can divide a LATEX document into sections, too.

1 The Contrapositive

For an example of proofs using the contrapositive, consider this claim:

Theorem 1. For all real numbers x and all integers $n \neq 0$, if x is an irrational number, then nx is also irrational.

Proof. We will show that for all real numbers x and all integers $n \neq 0$, nx is irrational if x is by proving the contrapositive. The contrapositive of the theorem is "for all real numbers x and all integers $n \neq 0$, if nx is rational than x is rational." To prove this, we assume n is an integer and x is a real number such that nx is rational. From the definition of rational numbers, this means $nx = \frac{a}{b}$ for integers a and $b \neq 0$. Dividing by n then yields

$$x=\frac{a}{nb}$$

Since integers are closed under multiplication, and neither n nor b are 0, $\frac{a}{nb}$ is rational. This proves that for all real numbers x and all integers $n \neq 0$, if nx is rational then x is rational. It thus also proves the contrapositive, that for all real numbers x and all integers $n \neq 0$, if x is an irrational number, then nx is also irrational.

2 Tables

This section presents an example of building simple tables in LATEX. For example, here's a truth table for "and."

P	Q	$P \wedge Q$
Т	Т	Т
Т	\mathbf{F}	F
F	Т	F
\mathbf{F}	\mathbf{F}	F

3 Biconditionals

Theorem 2. For all integers n, n is even if and only if n + 1 is odd.

Proof. We will prove that for all integers n, n is even if and only if n+1 is odd. We prove each direction separately.

We start by showing that if n is even, then n+1 is odd. From the definition of even numbers, n = 2m for some integer m. Therefore n+1 = 2m+1, which meets the definition of an odd integer.

Next we show that if n + 1 is odd, then n is even. Since n + 1 is odd n + 1 = 2m + 1 for some integer m, and thus n = 2m. Since m is an integer, this n meets the definition of an even integer.

We have now shown that if n is even, then n + 1 is odd, and that if n + 1 is odd, then n is even. Together, these statements establish that n is even if and only if n + 1 is odd.