In this document, we look at a proof about modular equivalence of a form of arithmetic.

Theorem 1. If a, b, c, and d are integers, and n a natural number, such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $(a + c) \equiv (b + d) \pmod{n}$.

Proof. We assume that a, b, c , and d are integers, and n a natural number, such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, and will show that $(a + c) \equiv (b + d)$ (mod *n*). Since $a \equiv b \pmod{n}$ we know that $a - b = kn$ for some integer k and similarly $c - d = mn$ for some integer m. Adding these equations yields

$$
(a - b) + (c - d) = kn + mn
$$

$$
(a + c) - (b + d) = (k + m)n
$$

In other words, n divides $(a + c) - (b + d)$, which by the definition of modular congruence means that $(a + c) \equiv (b + d) \pmod{n}$. We have now shown that if a, b, c, and d are integers, and n a natural number, such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $(a + c) \equiv (b + d) \pmod{n}$. \Box