In this document, we look at a proof about modular equivalence of a form of arithmetic.

Theorem 1. If a, b, c, and d are integers, and n a natural number, such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $(a + c) \equiv (b + d) \pmod{n}$.

Proof. We assume that a, b, c, and d are integers, and n a natural number, such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, and will show that $(a + c) \equiv (b + d) \pmod{n}$. Since $a \equiv b \pmod{n}$ we know that a - b = kn for some integer k and similarly c - d = mn for some integer m. Adding these equations yields

$$(a-b) + (c-d) = kn + mn$$

 $(a+c) - (b+d) = (k+m)n$

In other words, n divides (a + c) - (b + d), which by the definition of modular congruence means that $(a + c) \equiv (b + d) \pmod{n}$. We have now shown that if a, b, c, and d are integers, and n a natural number, such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $(a + c) \equiv (b + d) \pmod{n}$.