This document presents some examples of proofs by contradiction. The first is a generic demonstration of the technique:

Theorem 1. For all integers n, if $n \equiv 1 \pmod{2}$ then $n \not\equiv 2 \pmod{4}$.

Proof. We will prove by contradiction that for all integers n, if $n \equiv 1 \pmod{2}$ then $n \not\equiv 2 \pmod{4}$. We assume for the sake of contradiction that n is an integer such that $n \equiv 1 \pmod{2}$ and $n \equiv 2 \pmod{4}$. Since $n \equiv 1 \pmod{2}$, there is some integer a such that

$$n - 1 = 2a$$
$$n = 2a + 1 \tag{1}$$

Similarly, since $n \equiv 2 \pmod{4}$, there is some other integer b such that

$$n = 4b + 2 = 2(2b + 1)$$
(2)

From equation (1), we see that n is odd, and from equation (2) that n is even. Since a number can't be both odd and even, this is a contradiction. Since the assumption that $n \equiv 1 \pmod{2}$ and $n \equiv 2 \pmod{4}$ leads to a contradiction, we have proven by contradiction that for all integers n, if $n \equiv 1 \pmod{2}$ then $n \not\equiv 2 \pmod{4}$.

The next example is based on a classic proof by contradiction, namely a proof that $\sqrt{2}$ is irrational. Our example adapts the ideas from that proof to proving that $\sqrt{6}$ is also irrational:

Theorem 2. If x is a real number such that $x^2 = 6$ then x is irrational

Proof. We assume that x is a real number and $x^2 = 6$, and will prove by contradiction that x is irrational. So assume for the sake of contradiction that not only is x a real number and $x^2 = 6$, but that x is rational. Since x is rational, it can be written as

$$x = \frac{m}{n} \tag{3}$$

where m and n are integers, $n \neq 0$, and m and n have no common factors besides 1.

Squaring both sides of (3) gives

$$6 = \frac{m^2}{n^2}$$

$$6n^2 = m^2 \tag{4}$$

or

$$m^2 = 2(3n^2)$$

which means that m must be even. In other words m = 2p for some integer p.

Plugging 2p into equation (4) in place of m gives

$$6n^2 = (2p)^2$$
$$= 4p^2$$

 or

$$3n^2 = 2p^2$$

meaning that $3n^2$ is even. Now, if n^2 were odd, $3n^2$ would also be odd, so n^2 must be even.

We now arrive at a contradiction, because if m and n are both even, they have a common factor of 2, but we defined them to have no such common factor. Since we have showed that the assumption that x is rational leads to a contradiction, any square root of 6 must in fact be irrational.