For an example of what a proof by cases might look like when fully written out, suppose f(x) is defined by the following:

$$f(x) = \begin{cases} x^2 & \text{if } x < 0\\ x & \text{if } 0 \le x \le 1\\ 2x - 1 & \text{if } 1 < x \end{cases}$$
(1)

Then we have

Conjecture 1. For all real numbers x, f(x) as defined by (1) is greater than or equal to 0.

Proof. We will prove that $f(x) \ge 0$ for all real numbers x by analyzing each case in the definition in turn.

For the first case, consider x < 0. Then $f(x) = x^2$, which is greater than or equal to 0 for all values of x.

For the second case, consider $0 \le x \le 1$. In this case f(x) = x which is greater than or equal to 0 from the constraint $0 \le x \le 1$.

Finally, consider 1 < x. Here, f(x) = 2x - 1 which is an increasing function, i.e., f(x) > f(1) for all x > 1. Since $f(1) = 1 \ge 0$, we see that $f(x) \ge 0$ for all x > 1.

We have now shown that $f(x) \ge 0$ for all cases in the definition of f, and thus that $f(x) \ge 0$ for all real numbers x.