
Here are some examples of proofs involving infinite sets.
The first deals with the union of countably infinite sets, and illustrates how

bijections for new sets are sometimes constructed from bijections for component
sets.

Theorem 1. If A and B are disjoint countably infinite sets, then A∪B is also
countably infinite.

Proof. We prove that if A and B are disjoint countably infinite sets, then A∪B
is also countably infinite by showing that there is a bijection between the natural
numbers and A ∪B. Since A and B are countably infinite, there are bijections
between them and the natural numbers. Let those bijections be f : A→ N and
g : B → N, respectively. Now we define a new function h : A ∪B → N by

h(x) =

{
2f(x) if x ∈ A

2g(x)− 1 if x ∈ B
(1)

We can show that h is a bijection between A ∪ B and N by showing that it is
an injection and a surjection.

To show that h is an injection, we show that h(x) = h(y) implies that x = y.
So suppose x and y are elements of A ∪ B such that h(x) = h(y). Notice that
h produces an even number for elements of A and an odd number for elements
of B, so if h(x) = h(y), x and y are both elements of the same set. Suppose
both are elements of A. Then h(x) = 2f(x) and h(y) = 2f(y), so we have
2f(x) = 2f(y), or f(x) = f(y). Now since f is a bijection, this implies x = y.
Similarly, if x and y are both elements of B, 2g(x) − 1 = 2g(y) − 1, and again
g(x) = g(y) and so x = y.

To show that h is a surjection, we show that for any natural number n,
there is some x ∈ A∪B such that h(x) = n. So let n be a natural number, and
consider two cases, namely n is even and n is odd.

If n is even, we need an x ∈ A such that 2f(x) = n, or f(x) = n
2 . Since n is

even and a natural number, n
2 is a natural number. Since f is a bijection it is

also a surjection, and thus there is some x ∈ A for which f(x) = n
2 , and so in

turn h(x) = n.
On the other hand, if n is odd, then we seek an x ∈ B such that 2g(x)−1 = n.

Algebra gives us

2g(x)− 1 = n

2g(x) = n + 1

g(x) =
n + 1

2

Now since n is odd, n + 1 is even, and therefore n+1
2 is a natural number. Now

since g is a surjection, there is indeed an x ∈ B such that g(x) = n+1
2 and thus

h(x) = n.
We have now shown that h as defined by (1) is a bijection from A∪B to N,

which in turn means that A∪B is countably infinite. We have therefore proven
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that if A and B are disjoint countably infinite sets, then A∪B is also countably
infinite.

The second example deals with Cartesian products of countably infinite sets.
Such products are also countably infinite. The proof illustrates a common “di-
agonal” argument about pairs from countable sets.

Theorem 2. If A and B are countably infinite sets then A × B is countably
infinite.

Proof. We assume that A and B are countably infinite sets, and will show that
A × B is countably infinite. Since A and B are countable, they have the form
A = {A1, A2, A3, . . .} and B = {B1, B2, B3, . . .}. We can then imagine writing
the Cartesian product as a table whose rows correspond to elements of B and
columns to elements of A, like so:

We then match every pair in the product with a natural number by traversing
the table along lower-left-to-upper-right diagonals, starting in the upper left
corner: (A1, B1) forms the first diagonal, (A1, B2) and (A2, B1) the second, and
so forth. We assign natural numbers to pairs in the order we reach those pairs
in this traversal. Notice that this matching is a bijection. It is an injection
because if two pairs match the same natural number, then they must appear in
the same place in the traversal, i.e., they must be equal. The matching is also
a surjection because any pair lies on some diagonal, and since every diagonal is
finite the traversal will eventually reach that diagonal and pair and match the
pair to a natural number.

We have now established a bijection between A×B and the natural numbers,
and thereby shown that if A and B are countably infinite sets then A × B is
countably infinite.
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