Let \sim be the relation on the integers whereby $a \sim b$ if and only if a - b = 3k for some integer k (i.e., a - b is divisible by 3).

Theorem 1. Relation \sim as defined above is an equivalence relation.

Proof. We will prove that \sim is an equivalence relation by showing that it is reflexive, symmetric, and transitive.

To show that \sim is reflexive, we need to show that $a \sim a$ for all integers a. So let a be an integer. Then $a - a = 0 = 3 \times 0$ so $a \sim a$. Thus \sim is reflexive.

To show that \sim is symmetric, suppose a and b are integers and $a \sim b$, i.e., a-b=3k for some integer k. Then b-a=-3k=3(-k). Since k is an integer, so is -k, and thus b-a is divisible by 3 and so $b \sim a$. We have now shown that \sim is symmetric.

To show that \sim is transitive, let a, b, and c be integers such that $a \sim b$ and $b \sim c$. Thus a - b = 3k for some integer k and b - c = 3n for some integer n. Now

$$(a-b) + (b-c) = 3k + 3n$$
$$a-c = 3(k+n)$$

Since integers are closed under addition, we have shown that a - c is divisible by 3, and so $a \sim c$. Therefore \sim is transitive.

We have now shown that \sim is reflexive, symmetric, and transitive, and therefore that \sim as defined above is an equivalence relation.