
Math 239 01
Prof. Doug Baldwin

Problem Set 5 — Proofs by Contradiction and Cases

Complete by Tuesday, March 12
Grade by Friday, March 15

Purpose

This problem set develops your ability to do proofs in cases, and proofs by contradiction. When you finish
this problem set you should be able to . . .

• Prove claims by contradiction

• Prove claims using cases

• Write formal proofs.

Background

Our textbook discusses proof by contradiction in section 3.3, and proofs in cases in section 3.4. We discussed
proof by contradiction in class on February 27 and March 1, and proofs in cases on March 4.

Activity

Solve the following problems. All proofs must be written according to conventions for formal proofs, including
typeface rules (e.g., italic variables, emphasized labels for theorems and proofs, etc.); pay particular attention
to the relatively new guideline of stating the method that a proof uses early in that proof.

Question 1. The proposition implied by exercise 8b in section 3.3 of our textbook. You will need to start
by formulating the proposition, assuming that the special case in part a is true. (The proposition from
part a is “for all real numbers x, x +

√
2 is irrational, or −x +

√
2 is irrational”; see the textbook for

more information).

Solution:

Proposition 1. For all real numbers x and irrational numbers y, x + y is irrational or −x + y is
irrational.

Proof. We assume that x is a real number and that y is an irrational number, and prove by contra-
diction that x + y is irrational or −x + y is irrational. Suppose for the sake of contradiction that
x + y and −x + y are both rational. Then, because the rational numbers are closed under addition,



the sum of these two expressions is also rational, i.e., (x+ y) + (−x+ y) = 2y is rational. Following
the definition of the rationals, let 2y = a

b for integers a and b, b 6= 0. Then

2y

2
=

a

2b
= y

is also rational, since 2b is an integer by closure, and not equal to 0 since b 6= 0. This contradicts
the fact that y is irrational. We have thus shown that for all real numbers x and irrational numbers
y, x + y is irrational or −x + y is irrational.

Question 2. Exercise 16b in section 3.3 of Sundstrom’s text (show that for all integers a and b, b2 6= 4a+2.)

Solution:

Proposition 2. For all integers a and b, b2 6= 4a + 2.

Proof. We assume that a and b are integers, and show by contradiction that b2 6= 4a + 2. Assume
for the sake of contradiction that a and b are integers and b2 = 4a+2. Since 4a+2 can be written as
2(2a + 1) and integers are closed under addition and multiplication, we see that b2 is even. This in
turn implies, by Sundstrom’s Theorem 3.7, that b is even. We therefore have b = 2c for some integer
c, and thus b2 = 4c2 . But we also know that b2 = 4a + 2, so 4a + 2 = 4c2. Dividing both sides of
this equation by 4 yields a+ 1

2 = c2. Now a is an integer, and c2 must be an integer because integers
are closed under multiplication, so a and c2 are two integers that differ by 1

2 , which is impossible.
We have thus reached a contradiction, and so conclude that for all integers a and b, b2 6= 4a+ 2.

Question 3. Exercise 5a in section 3.4 of Sundstrom’s text (prove that for all integers a, b, and d with
d 6= 0, if d divides a or d divides b, then d divides ab).

Solution:

Proposition 3. For all integers a, b, and d with d 6= 0, if d divides a or d divides b, then d divides
ab.

Proof. We assume that a, b, and d are integers with d 6= 0, and show that if d divides a or d divides
b, then d divides ab. The proof is in two cases, as follows:

Case 1: d divides a. Since d divides a, we can write a as a = kd for some integer k. Then
ab = (kd)b = (kb)d. Since integers are closed under multiplication, kb is an integer, and so d divides
ab.

Case 2: d divides b. Similar to the first case, b = kd for some integer k and ab = a(kd) = (ka)d and
so d divides ab.

We have now shown that in all cases allowed by the proposition, d divides ab, and so have shown
that for all integers a, b, and d with d 6= 0, if d divides a or d divides b, then d divides ab.

Question 4. Exercise 7 in section 3.4 of Sundstrom’s text (determine whether it is true or false that for all
integers n, if n is odd then 8|(n2 − 1); prove the proposition or provide a counterexample, according to
whether you think it is true or false). Recall that the notation a|b means “a divides b,” i.e., b = ka for
some integer k.
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Solution: The claim is true:

Proposition 4. For all integers n, if n is odd then 8|(n2 − 1).

Proof. We assume that n is an odd integer, and show that 8|(n2 − 1). Since n is odd, we can write
it as n = 2a + 1 for some integer a. The proof then proceeds by cases, according to whether a is
odd or even.

In the first case, a is odd, i.e., a = 2b + 1 for some integer b. Thus

n2 − 1 = (2(2b + 1) + 1)2 − 1

= (4b + 3)2 − 1

= (16b2 + 24b + 9)− 1

= 16b2 + 24b + 8

= 8(2b2 + 3b + 1)

Since integers are closed under multiplication and addition, 2b2 + 3b+ 1 is an integer, and so we see
that 8 divides n2 − 1.

In the second case, a is even, i.e., a = 2b for some integer b. Then

n2 − 1 = (2(2b) + 1)2 − 1

= (4b + 1)2 − 1

= 16b2 + 8b + 1− 1

= 16b2 + 8b

= 8(2b2 + b)

As in the first case, 2b2 + b is an integer by closure, and so we see that 8 divides n2 − 1.

We have now shown that in all cases, 8 divides n2 − 1, and so we conclude that for all integers n, if
n is odd then 8|(n2 − 1).

Follow-Up

I will grade this exercise in a face-to-face meeting with you. During this meeting I will look at your solution,
ask you any questions I have about it, answer questions you have, etc. Please bring a written solution to the
exercise to your meeting, as that will speed the process along.

Sign up for a meeting via Google calendar. Please make the meeting 15 minutes long, and schedule it to
finish before the end of the “Grade By” date above.
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