Theorem 1. If P and Q are propositions, then $\neg(P \leftrightarrow Q) \equiv (P \lor Q) \land (\neg P \lor \neg Q)$.

Proof. We assume P and Q are propositions, and show via truth tables that $\neg(P \leftrightarrow Q) \equiv (P \lor Q) \land (\neg P \lor \neg Q)$. The truth table for $\neg(P \leftrightarrow Q)$ is ...

(-		~()	((- · ·	,)	(
	P	Q	$P \leftrightarrow$	Q ·	$\neg (P \leftrightarrow Q)$)	
	Т	Т	Т		F		
	Т	\mathbf{F}	\mathbf{F}		Т		
	\mathbf{F}	Т	\mathbf{F}		Т		
	\mathbf{F}	\mathbf{F}	Т		F		
Similarly, the truth table for $(P \lor Q) \land (\neg P \lor \neg Q)$ is							
	P	Q	$\neg P$	$\neg Q$	$P \lor Q$	$\neg P \lor \neg Q)$	$(P \lor Q) \land (\neg P \lor \neg Q)$
	Т	Т	\mathbf{F}	F	Т	F	F
	Т	\mathbf{F}	\mathbf{F}	Т	Т	Т	Т
	\mathbf{F}	Т	Т	\mathbf{F}	Т	Т	Т
	\mathbf{F}	\mathbf{F}	Т	Т	\mathbf{F}	Т	F

Since the final columns of both tables are the same, we have proven that if P and Q are propositions, then $\neg(P \leftrightarrow Q) \equiv (P \lor Q) \land (\neg P \lor \neg Q)$.

Theorem 2. If P, Q, and R are propositions, then $\neg(P \rightarrow (Q \lor R)) \equiv P \land \neg Q \land \neg R$.

Proof. We assume that P, Q, and R are propositions, and show via Boolean algebra that $\neg(P \rightarrow (Q \lor R)) \equiv P \land \neg Q \land \neg R$. Specifically, from the negation of a conditional and one of De Morgan's laws we see ...

$$\neg (P \to (Q \lor R)) \equiv P \land \neg (Q \lor R)$$
$$\equiv P \land \neg Q \land \neg R$$

We have thus shown that if P, Q, and R are propositions, then $\neg(P \rightarrow (Q \lor R)) \equiv P \land \neg Q \land \neg R$.