
Theorem 1. For all integers d ≥ 2, if n is an integer such that d divides n,
then d does not divide n + 1.

Proof. We will show that for all integers d ≥ 2, if n is an integer such that d
divides n, then d does not divide n + 1 by contradiction. Assume for the sake
of contradiction that n is an integer such that some integer d ≥ 2 divides n and
also divides n + 1. Since d divides n and n + 1, we have

n = kd (1)

and
n + 1 = cd (2)

for some integers k and c. Adding 1 to both sides of Equation 1 gives

kd + 1 = n + 1

= cd

where the last line is from Equation 2. Dividing by d we see that

k +
1

d
= c

But since d ≥ 2, 1
d ≤

1
2 and so it is impossible for k + 1

d to be an integer. This
is a contradiction, and so we have proven by contradiction that for all integers
d ≥ 2, if n is an integer such that d divides n, then d does not divide n+ 1.

Theorem 2. There are an infinite number of prime numbers.

Proof. We prove that there are an infinite number of prime numbers by contra-
diction. Assume for the sake of contradiction that there are a finite number of
primes. Then we can list the primes as {p1, p2, . . . , pn} for some finite natural
number n. Now consider the product P = p1p2 . . . pn. Since all primes are
greater than or equal to 2, Theorem 1 implies that none of p1 through pn divide
P +1. This means that P +1 is not a product of prime numbers, and since every
integer greater than or equal to 2 is either prime or a product of primes, P + 1
must be a prime number. Further, P + 1 is bigger than every member of the set
{p1, p2, . . . , pn}, and so is not in that set. But this contradicts the assumption
that the only primes are the numbers {p1, p2, . . . , pn}. We have thus shown by
contradiction that there must be an infinite number of prime numbers.

Comment: note that an equivalent statement to this theorem is that there
is no largest prime number.
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