Theorem 1. For all natural numbers n,
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Proof. We prove by induction on n that Equation 1 holds for all natural numbers
n.
For the basis step we show that

This follows because
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Turning to the induction step, we must show that whenever Equation 1 holds
for n = k, it also holds for n = k 4+ 1. We therefore assume that
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and will show that
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We do this by rewriting the left-hand side:
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Having shown that Equation 1 holds when n = 1, and that if Equation 1
holds for n = k it also holds for n = k + 1, we have proven by induction that

n

. o nn+1
ZZZ(;)

i=1

for all natural numbers n. O



