Theorem 1. The set F of all functions from \mathbb{N} to \mathbb{N} is uncountable.

Proof. We prove by contradiction that the set F of all functions from \mathbb{N} to \mathbb{N} is uncountable. Assume for the sake of contradiction that F is countable. Then there is a bijection $f: \mathbb{N} \to F$ that allows us to number the members of F as f_1 , f_2 , etc. Now construct a new function $g: \mathbb{N} \to \mathbb{N}$ by $g(n) = f_n(n) + 1$. Clearly g is a member of F, yet it cannot be because it differs from each element of Fin how it maps at least one number. It is impossible for g to simultaneously be a member of F and not be, and so we conclude that the set F of all functions from \mathbb{N} to \mathbb{N} is in fact not countable. \Box