Theorem 1. Every natural number $n \ge 6$ can be written as 3a + 4b for some non-negative integers a and b.

Proof. We show by strong induction on n that every natural number $n \ge 6$ can be written as 3a + 4b for some non-negative integers a and b.

For the basis steps we show that 6, 7, and 8 can be written as 3a + 4b for non-negative integers a and b. In particular ...

- $6 = 3 \times 2 + 4 \times 0$
- $7 = 3 \times 1 + 4 \times 1$
- $8 = 3 \times 0 + 4 \times 2$

For the induction step, we assume that for some $k \ge 8$, all natural numbers, i, such that $6 \le i \le k$ can be written as 3a + 4b. We can then write k + 1 as (k-2) + 3. Since $k \ge 8$, we know that $k-2 \ge 6$ and therefore can be written as 3a + 4b for some non-negative integers a and b. Thus k+1 = (3a+4b)+3 = 3(a+1)+4b.

Since we have shown that 6, 7, and 8 can be written as 3a + 4b for non-negative integers a and b, and that for any $k \ge 8$, if all naturals between 6 and k can be written as 3a + 4b then so can k + 1, we have proven by strong induction that every natural number $n \ge 6$ can be written as 3a + 4b for some non-negative integers a and b.