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Math	239	—	Sample	Questions	for	Hour	Exam	2	
Spring,	2018	

This	document	is	a	collection	of	questions	relevant	to	our	upcoming	exam	that	I	have	used	
on	past	Proofs	exams.	I’ve	included	the	original	point	value	of	each	question,	as	an	
indication	of	how	“big”	I	think	each	is	(our	exam	will	have	a	total	of	50	points).	All	of	the	
questions	address	material	that	might	appear	on	our	exam,	but	there	are	more	questions	
here	than	will	appear	on	it.	I’ve	included	my	solutions	to	each	question,	but	I	strongly	
recommend	that	you	try	to	answer	each	question	for	yourself	before	looking	at	the	
solutions.	My	proofs	italicize	variable	names,	since	I	am	typing	my	solutions,	whereas	you	
can	write	yours	by	hand	and	will	not	need	to	distinguish	italic	from	regular	characters.	

Question	1	(15	Points).	Prove	that	the	number	5	-	√2	is	irrational.	Your	proof	should	
follow	our	conventions	for	formal	proof-writing,	except	for	conventions	that	require	
using	italics	or	other	typefaces	that	would	be	hard	to	achieve	with	handwriting.	

Solution:	We	prove	by	contradiction	that	5	-	√2	is	irrational.	Assume	for	the	sake	of	
contradiction	that	5	-	√2	is	rational,	i.e.,	there	exist	integers	a	and	b,	with	b	≠	0,	such	
that	5	-	√2	=	a/b.	Algebraically	rearranging	this	equation	yields	√2	=	5	–	a/b,	which	is	
rational	since	the	rationals	are	closed	under	subtraction.	But	this	is	a	contradiction,	
because	we	have	previously	proven	that	√2	is	irrational.	We	have	thus	proven	by	
contradiction	that	5	-	√2	must	be	irrational.	QED.	
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Question	2	(15	Points).	Let	the	function	B(x)	be	defined	as	

𝐵 𝑥 = 	
𝑥 If	0 ≤ 𝑥 < 1

2 − 𝑥 If	1 ≤ 𝑥 ≤ 2
0 Otherwise

	

(B(x)	is	a	“first-degree	basis	spline.”	It’s	not	very	useful	in	its	own	right,	but	is	a	simple	
member	of	a	family	of	functions	that	are	widely	used	for	approximating	complicated	
curves	with	low-degree	polynomials,	among	other	things.)	

Prove	that	for	all	real	numbers	x,	0	≤	B(x)	≤	1.	Your	proof	should	follow	our	conventions	
for	formal	proof-writing,	except	for	conventions	that	require	using	italics	or	other	
typefaces	that	would	be	hard	to	achieve	with	handwriting.	

Solution:	We	use	cases	to	prove	that	for	all	real	numbers	x,	0	≤	B(x)	≤	1.	The	cases	
correspond	to	the	cases	in	the	definition	of	B(x),	namely…	

Case	1:	0	≤	x	<	1.	In	this	case	B(x)	=	x,	and	so	0	≤	B(x)	<	1	which	in	turn	means	
0	≤	B(x)	≤	1	.	

Case	2:	1	≤	x	≤	2.	In	this	case	B(x)	=	2	–	x.	Since	1	≤	x	≤	2,	we	have	2	–	1	≥	2	–	x	≥	2	–	2,	or	
0	≤	2	–	x	≤	1.	Since	B(x)	=	2	–	x,	these	last	inequalities	show	that	0	≤	B(x)	≤	1.	

Case	3:	x	<	0	or	x	>	2.	In	this	case	B(x)	is	defined	by	be	0,	so	0	≤	B(x)	≤	1.	

These	three	cases	cover	all	possible	real	values	for	x,	and	so	together	prove	that	for	all	
real	numbers	x,	0	≤	B(x)	≤	1.	QED.	
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Question	3	(15	Points).	Prove	that	if	a	and	b	are	integers	and	the	product	ab	is	not	divisible	
by	9,	then	at	least	one	of	a	and	b	is	not	divisible	by	3.	

Solution:	We	prove	that	if	a	and	b	are	integers	and	the	product	ab	is	not	divisible	by	9,	
then	at	least	one	of	a	and	b	is	not	divisible	by	3	by	proving	the	contrapositive.	In	other	
words,	we	prove	that	if	integers	a	and	b	are	both	divisible	by	3,	then	ab	is	divisible	by	9.	
Assume	that	a	and	b	are	integers	divisible	by	3,	i.e.,	that	there	exist	integers	x	and	y	such	
that	a	=	3x	and	b	=	3y.	We	can	then	write	the	product	ab	as	

𝑎𝑏 = (3𝑥)(3𝑦)	

= 9𝑥𝑦	

Since	the	integers	are	closed	under	multiplication,	xy	is	an	integer	and	so	ab	is	a	
multiple	of	9.	We	have	thus	proven	the	contrapositive,	and	so	have	also	proven	that	if	a	
and	b	are	integers	and	the	product	ab	is	not	divisible	by	9,	then	at	least	one	of	a	and	b	is	
not	divisible	by	3.	QED.	
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Question	4	(20	Points).	Prove	that	for	all	natural	numbers	n,	11<	is	odd.	

Solution:	We	use	induction	on	n	to	prove	that	for	all	natural	numbers	n,	11<	is	odd.	

For	the	base	case,	consider	n	=	1.	111	=	11,	which	is	odd.	

For	the	induction	step,	we	show	that	if	k	is	a	natural	number	such	that	11k	is	odd,	then	
11k+1	is	also	odd.	Assume	that	that	11k	is	odd,	and	note	that	11k+1	=	11	×	11k.	We	know	
that	both	11	and	11k	are	odd,	and	that	the	product	of	two	odd	numbers	is	odd.	Thus	we	
conclude	that	11k+1	is	odd.	

We	have	now	established	both	the	base	case	and	the	induction	step,	and	so	have	shown	
by	mathematical	induction	that	for	all	natural	numbers	n,	11<	is	odd.	QED.	
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Question	5	(15	Points).	Prove	that	no	integer	n	has	the	property	that	n	≡	1	(mod	2)	and	
n	≡	4	(mod	6).	

Solution:	We	prove	by	contradiction	that	no	integer	n	has	the	property	that	
n	≡	1	(mod	2)	and	n	≡	4	(mod	6).	Assume	for	the	sake	of	contradiction	that	n	is	an	
integer	and	that	n	≡	1	(mod	2)	and	n	≡	4	(mod	6).	Since	n	≡	1	(mod	2),	we	know	that	
there	is	some	integer	x	such	that	n	=	2x	+	1.	Similarly,	there	is	some	integer	y	such	that	
n	=	6y	+	4.	Since	these	expressions	both	equal	n,	we	have	an	equality	that	we	can	
rearrange	as	follows:	

2𝑥 + 1 = 6𝑦 + 4	

2𝑥 − 6𝑦 = 3	

2 𝑥 − 3𝑦 = 3	

Since	the	integers	are	closed	under	multiplication	and	subtraction,	x	–	3y	is	an	integer,	
and	so	we	have	shown	that	3	is	even.	But	this	is	a	contradiction,	since	3	is	clearly	odd.	
We	thus	conclude	that	no	integer	n	has	the	property	that	n	≡	1	(mod	2)	and	
n	≡	4	(mod	6).	QED.	
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Question	6	(5	Points).	Are	the	following	statements	logically	equivalent?	Explain	why	or	
why	not	in	a	sentence	or	two.	

Statement	1:	There	is	no	mathematician	who	likes	every	theorem.	

Statement	2:	Every	mathematician	has	some	theorem	that	they	don’t	like.	

Solution:	Think	of	the	statements	as	quantified	statements:	statement	1	is	“it	is	not	the	
case	that	there	exists	a	mathematician,	M,	such	that	for	every	theorem,	T,	M	likes	T.”	
Applying	rules	for	negating	quantified	statements,	this	becomes	

“For	all	mathematicians,	M,	it	is	not	the	case	that	for	all	theorems,	T,	M	likes	T”	

“For	all	mathematicians,	M,	there	exists	a	theorem,	T,	such	that	M	does	not	like	T.”	

This	last	is	Statement	2,	so	the	original	statements	are	equivalent.	
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Question	7	(15	Points).	Prove	that	for	all	integers	a	and	b,	with	b	≠	0,	the	rational	number	
a/b	is	an	integer	if	and	only	if	b	divides	a.	Your	proof	should	follow	our	conventions	for	
formal	proof-writing,	except	for	conventions	that	require	using	italics	or	other	
typefaces	that	would	be	hard	to	achieve	with	handwriting.	

Solution:	We	assume	that	a	and	b	are	integers,	with	b	≠	0,	and	show	that	a/b	is	an	
integer	if	and	only	if	b	divides	a.	We	prove	each	direction	of	the	biconditional	separately.	

For	the	first	direction,	we	assume	that	b	divides	a,	and	show	that	a/b	is	an	integer.	Since	
b	divides	a,	there	is	some	integer	k	such	that	a	=	kb.	Therefore	a/b	=	kb/b	=	k,	which	is	
an	integer.	

For	the	second	direction,	we	assume	that	a/b	is	an	integer,	call	it	m,	and	show	that	b	
divides	a.	From	a/b	=	m,	we	have	a	=	mb,	showing	that	a	is	an	integer	multiple	of	b,	i.e.,	b	
divides	a.	

Since	we	have	shown	both	that	if	b	divides	a	then	a/b	is	an	integer,	and	that	if	a/b	is	an	
integer	then	b	divides	a,	we	have	proven	that	for	all	integers	a	and	b,	with	b	≠	0,	the	
rational	number	a/b	is	an	integer	if	and	only	if	b	divides	a.	QED.	
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Question	8	(15	Points).	Prove	that	for	all	real	numbers	x,	if	x	is	irrational	then	 𝑥@ 	is	also	
irrational.	Your	proof	should	follow	our	conventions	for	formal	proof-writing,	except	
for	conventions	that	require	using	italics	or	other	typefaces	that	would	be	hard	to	
achieve	with	handwriting.	

Solution.	We	prove	by	contradiction	that	for	all	real	numbers	x,	if	x	is	irrational	then	 𝑥@ 	
is	also	irrational.	So	assume	that	x	is	an	irrational	number	but	 𝑥@ 	is	rational,	i.e.,	

𝑥@ =
𝑎
𝑏
	

for	some	integers	a	and	b	with	b≠	0.	Then	x	must	equal	a3/b3,	which	is	rational	because	
the	integers	are	closed	under	multiplication,	and	b3	is	not	0.	But	this	is	a	contradiction,	
because	a	number	cannot	be	both	irrational	and	rational.	Since	we	have	shown	that	it	is	
impossible	for	 𝑥@ 	to	be	rational,	we	have	proven	that	for	all	real	numbers	x,	if	x	is	
irrational	then	 𝑥@ 	is	also	irrational.	QED.	
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Question	9	(15	Points).	Prove	that	for	all	integers	n,	if	n	≡	0	(mod	4)	or	n	≡	2	(mod	4)	then	
n	is	even.	Your	proof	should	follow	our	conventions	for	formal	proof-writing,	except	for	
conventions	that	require	using	italics	or	other	typefaces	that	would	be	hard	to	achieve	
with	handwriting.	

Solution.	We	assume	that	n	≡	0	(mod	4)	or	n	≡	2	(mod	4)	and	prove	that	n	must	be	
even.	The	proof	is	in	cases,	corresponding	to	n	≡	0	(mod	4)	and	n	≡	2	(mod	4).	

For	the	first	case,	suppose	n	≡	0	(mod	4).	Then	n	=	4a	+	0	for	some	integer	a,	which	is	
equivalent	to	n	=	2(2a).	By	the	definition	of	“even,”	2(2a)	is	an	even	number.		

For	the	second	case,	suppose	n	≡	2	(mod	4),	which	means	n	=	4b	+	2	for	some	integer	b.	
Rewriting,	we	have	n	=	4b	+	2	=	2(2b+1).	Because	integers	are	closed	under	addition	
and	multiplication,	2b+1	is	an	integer,	and	so	once	again	n	is	even.	

Having	shown	that	n	is	even	both	when	n	≡	0	(mod	4)	and	when	n	≡	2	(mod	4),	we	have	
proven	that	for	all	integers	n,	if	n	≡	0	(mod	4)	or	n	≡	2	(mod	4)	then	n	is	even.	QED.	


