Theorem 1. If A and B are finite subsets of some universal set, then $A \cup B$ is finite.

Proof. We assume that A and B are finite subsets of some universal set. Therefore there is a bijection $g: B \to \mathbb{N}_m$ for some natural number m. Furthermore, since $A - B \subseteq A$ and A is finite, so is A - B. Therefore there is a bijection $f: A - B \to \mathbb{N}_k$ for some natural number k. Now define $h: A \cup B \to \mathbb{N}_{k+m}$ by

$$h(x) = \begin{cases} f(x) + m \text{ if } x \in A - B\\ g(x) \text{ if } x \in B \end{cases}$$

To see that h is an injection, suppose $x \neq y$. Then if x and y are both elements of B or both elements of A - B, $h(x) \neq h(y)$ because g and f are injections. If, without loss of generality, $x \in B$ and $y \in A - B$, then $h(x) \neq h(y)$ because $h(x) \leq m$ while h(y) > m. To see that h is a surjection, note first that h uses gto map B to \mathbb{N}_m , and g is a surjection from B to \mathbb{N}_m . Second, f is a surjection from A - B to \mathbb{N}_k , and for every $x \in A - B$, h(x) = f(x) + m, which is a surjection from A - B to $\{1 + m, 2 + m, 3 + m, \ldots, k + m\}$. Thus h maps some element of B to each element of $\{1, 2, 3, \ldots, m\}$, and some element of A - B to each element of $\{1 + m, 2 + m, 3 + m, \ldots, k + m\}$, so h is a surjection from $A \cup B$ to \mathbb{N}_{k+m} . Since h is an injection and a surjection, h is a bijection from $A \cup B$ to \mathbb{N}_{k+m} , establishing that $A \cup B \approx \mathbb{N}_{k+m}$, and so $A \cup B$ is finite.