Theorem 1. Let F_n , $n \ge 0$, denote the n^{th} Fibonacci number. Then for all $n \ge 6$, $F_n \ge \sqrt{2}^n$.

Proof. We use strong induction on n to show that for all $n \ge 6$, $F_n \ge \sqrt{2}^n$. For basis steps, we consider n = 6 and n = 7. When n = 6, we have $F_6 = 8 = \sqrt{2}^6$, and so the claim holds. For n = 7, we have $F_7 = 13$, and $\sqrt{2}^7 = \sqrt{2} \times 8$. Since $\sqrt{2} < 1.5$, $\sqrt{2} \times 8 < 12 \le 13$, and so $F_7 \ge \sqrt{2}^7$. For the induction step, we assume that for some natural number $k \ge 7$, $F_i \ge \sqrt{2}^i$ for all natural numbers $6 \le i \le k$. We then show that $F_{k+1} \ge \sqrt{2}^{k+1}$. We begin with the definition of F_{k+1} :

$$F_{k+1} = F_{k-1} + F_k$$

$$\geq F_{k-1} + F_{k-1}$$

$$= 2F_{k-1}$$

$$\geq 2\sqrt{2}^{k-1}$$

$$= \sqrt{2}^{k+1}$$

We have now shown that $F_6 \ge \sqrt{2}^6$, and $F_7 \ge \sqrt{2}^7$, and that for all $k \ge 7$, $F_i \ge \sqrt{2}^i$ for all natural numbers $6 \le i \le k$ implies that $F_{k+1} \ge \sqrt{2}^{k+1}$. It therefore follows by the strong principle of induction that for all $n \ge 6$, $F_n \ge \sqrt{2}^n$.