Theorem 1. The set $S = \{2^i | i \in \mathbb{N}\}$ is countably infinite.

Proof. We prove that S is countably infinite by showing that there is a bijection $f : \mathbb{N} \to S$. Consider $f(n) = 2^n$; it is certainly a function from \mathbb{N} to S. Function f is an injection because if f(n) = f(m) then $2^n = 2^m$ and so n = m. Furthermore, f is a surjection because if s is any element of S, then $s = 2^n$ for some natural number n, and so s = f(n). Since we have shown that f is an injection and a surjection from \mathbb{N} to S, we have shown that there is a bijection from \mathbb{N} to S and therefore S is countably infinite.