SUNY Geneseo Department of Mathematics
Math 239
Spring 2018
Prof. Doug Baldwin
Complete by Tuesday, February 13
Grade by Friday, February 16
This problem set reinforces your understanding of basic set concepts and notations for defining sets.
This problem set is mainly based on material in section 2.3 of our textbook. We discussed that material in class on February 2 and 5.
This problem set introduces a new feature that I will include in certain future problem sets: “proofs out of context.” The idea here is that this course is central to the mathematics major because most later courses expect you to read and write proofs, definitions, and similar things about whatever that later course studies — in other words, to be able to use the material you learned in this course outside of the context in which you learned it. So to get you used to doing that, I will inject problems into some problem sets that apply concepts covered in this course to branches of math not otherwise used as examples in the textbook or lectures. Problem 3 on this problem set is the first example.
Use the roster method to describe each of the following sets:
Let S be the set { 4n | n ∈ ℕ }. For each set in Part A, determine whether it is equal to S, whether it is a subset of S, whether S is a subset of it, or whether there is no equality or subset relation between it and S (note that more than one of these relations may hold at the same time). You should have informal reasons for your decisions, but do not need formal proofs.
Use set builder notation to describe each of the following sets:
Let R be the set { 7, 14, 21, … }. For each set in Part A, determine whether it is equal to R, whether it is a subset of R, whether R is a subset of it, or whether there is no equality or subset relation between it and R (note that more than one of these relations may hold at the same time). You should have informal reasons for your decisions, but do not need formal proofs.
Define an alphabet to be a set of letters or other symbols.
If A is an alphabet, define a string over A to be any sequence of symbols from A.
Example: the set {A,E,I,O,U} is an alphabet; some strings over this alphabet include the sequences
UIA
EIEIO
A
etc.
Using either roster notation or set builder notation, describe the smallest alphabet A such that
MATH221
is a string over A.
Are there any alphabets besides your answer to Part A that MATH221 is also a string over? If so, give an example; if not explain why not.
I will grade this exercise in a face-to-face meeting with you. During this meeting I will look at your solution, ask you any questions I have about it, answer questions you have, etc. Please bring a written solution to the exercise to your meeting, as that will speed the process along.
Sign up for a meeting via Google calendar. Please make the meeting 15 minutes long, and schedule it to finish before the end of the “Grade By” date above.
I will use the following guidelines to grade this problem set: