Wild Conjecture 1. If x is an even integer and y is an integer, then $x y$ is an even integer.

Proof. Assuming that x is an even integer and y is an integer, we will prove that $x y$ is an even integer. By definition an even integer x can be written as $x=2 n$ for some integer n. Using this definition and regrouping we see...

$$
\begin{aligned}
x y & =(2 n) y \\
& =2(n y)
\end{aligned}
$$

Since the integers are closed under multiplication, $n y$ is an integer, call it p, yielding

$$
x y=2 p
$$

Since there exists an integer p such that $x y=2 p, x y$ is an even integer. We have therefore shown that if x is an even integer and y is an integer, then $x y$ is an even integer.

