Math 239 Problem Set 9 Solution

Doug Baldwin

March 23, 2017

Here are my solutions to the questions in Problem Set 9.

Problem 1. The proposition arising from problems 4a, b, and c in section 4.2 of Sundstrom's text is

Proposition 1. For all natural numbers $n \geq 2$,

$$
\prod_{i=2}^{n} \left(1 - \frac{1}{i^2} \right) = \frac{n+1}{2n}
$$
 (1)

Proof. We prove Equation 1 by induction on n .

For the basis step, assume $n = 2$. We then have

$$
\prod_{i=2}^{2} \left(1 - \frac{1}{i^2} \right) = 1 - \frac{1}{4}
$$

$$
= \frac{3}{4}
$$

$$
= \frac{2+1}{2 \times 2}
$$

establishing that Equation 1 holds for $n = 2$.

For the induction step, we let $k \geq 2$ be a natural number such that Equation 1 holds when $n = k$, and we show that Equation 1 also holds when $n = k + 1$. We do this by breaking the product on the left side of Equation 1 into two parts and applying the induction hypothesis:

$$
\prod_{i=2}^{k+1} \left(1 - \frac{1}{i^2}\right) = \prod_{i=2}^{k} \left(1 - \frac{1}{i^2}\right) \left(1 - \frac{1}{(k+1)^2}\right)
$$

$$
= \frac{k+1}{2k} \left(1 - \frac{1}{(k+1)^2}\right)
$$

$$
= \frac{k+1}{2k} \left(\frac{(k+1)^2 - 1}{(k+1)^2}\right)
$$

$$
= \frac{k+1}{2k} \left(\frac{k^2 + 2k}{(k+1)^2}\right)
$$

$$
= \frac{1}{2} \left(\frac{k+2}{k+1}\right)
$$

$$
= \frac{(k+1) + 1}{2(k+1)}
$$

We have thus shown that for all natural numbers $k \geq 2$, if Equation 1 holds when $n = k$ then Equation 1 holds when $n = k + 1$.

Having shown both a basis step of $n = 2$ and the induction step, we conclude by the extended principle of mathematical induction that Equation 1 holds for all natural numbers greater than or equal to 2. \Box

Problem 2. By trying various small natural numbers, it appears that all natural numbers greater than or equal to 12 can be written as a sum of the form $4x + 5y$ for non-negative integers x and y. I thus conjecture the following:

Proposition 2. For all natural number $n \geq 12$, there exist non-negative integers x and y such that $n = 4x + 5y$.

Proof. We let $P(n)$ be the predicate " $n = 4x+5y$ for some non-negative integers x and y," and prove by strong induction on n that P holds for all natural numbers greater than or equal to 12.

We use four basis steps, namely $n = 12$, $n = 13$, $n = 14$, and $n = 15$. For each of these values, we observe

$$
12 = 4 \times 3 + 5 \times 0
$$

\n
$$
13 = 4 \times 2 + 5 \times 1
$$

\n
$$
14 = 4 \times 1 + 5 \times 2
$$

\n
$$
15 = 4 \times 0 + 5 \times 3
$$

This establishes that P holds for 12, 13, 14, and 15.

For the inductive step, we show that if $k \geq 15$ is a natural number and $P(m)$ is true for all natural numbers m satisfying $12 \le m \le k$, then $P(k+1)$ is also true. To show this, notice that because $k \ge 15$, $k-3 \ge 12$; $k-3$ is also less than or equal to k. Thus $P(k-3)$ holds, i.e., $k-3=4x+5y$ for some non-negative integers x and y . But now we see that

$$
k+1 = (k-3) + 4
$$

= 4x + 5y + 4
= 4(x + 1) + 5y

Since the non-negative integers are closed under addition, $x + 1$ and y are both non-negative integers. Thus $P(k+1)$ is true.

We have thus established, by the second principle of mathematical induction, that for all natural number $n \geq 12$, there exist non-negative integers x and y such that $n = 4x + 5y$. \Box

Problem 3. (Find $A \cap B$, $A \cup B$, and $(A \cup B)^C$ if A is the set of natural numbers greater than or equal to 7, B is the set of odd natural numbers, and the universal set is N.)

 $A \cap B$ is the set of natural numbers that are greater than or equal to 7 and odd, i.e., $\{7, 9, 11, \ldots\}$.

 $A \cup B$ is the set of natural numbers that are greater than or equal to 7 or odd, i.e., $\{1, 3, 5, 7, 8, 9, 10, \ldots\}$.

 $(A\cup B)^C$ is the set of natural numbers that are neither greater than or equal to 7 nor odd. By de Morgan's Law, this is the set of natural numbers less than 7 and even, or {2, 4, 6}.

Problem 4. Using results stated or proven in Problem Set 5, prove the following:

Proposition 3. For any real numbers x and y such that $x < y$, there is a natural number *n* such that $ny - nx > 1$.

Proof. We prove the proposition using a direct proof from Problem Set 5's proposition 1 (which said that for all real numbers x, if $x > 0$ then there is a natural number *n* such that $0 < \frac{1}{n} < x$). Since $x < y$, $y - x > 0$ and so by Problem Set 5's Proposition 1, there exists a natural number n such that $0 < \frac{1}{n} < y - x$. Multiplying both sides of the second inequality by n yields $1 < ny - nx$, or $ny - nx > 1$. We have thus proven that for any real numbers x and y such that $x < y$, there is a natural number n such that $ny - nx > 1$. \Box