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Here are my solutions to the questions in Problem Set 11.

Problem 1. (Find the Cartesian product {−1, 0, 1} × {a, b}.)
The Cartesian product is the set of all ordered pairs that can be made from

the two sets, so

{−1, 0, 1} × {a, b} = {(−1, a), (−1, b), (0, a), (0, b), (1, a), (1, b)}

Problem 2.

Proposition 1. If A and B are nonempty sets, then A × B = B × A if and
only if A = B.

Proof. We prove that if A and B are nonempty sets, then A × B = B × A if
and only if A = B by proving each direction separately.

First, we show that if A × B = B × A then A = B. From the definition
of Cartesian product, we know that for every x that is in A and every y in B,
(x, y) is in A×B. Since A×B = B×A, (x, y) must also be a member of B×A,
which means that x ∈ B and y ∈ A. Thus we see that every member x of A is
in B, and every member y of B is in A, and so A = B.

For the second direction, we show that if A = B, then A× B = B × A. So
assume A = B, and notice that substituting equals for equals then yields

A×B = A×A
= B ×A.

We have thus shown that if A = B, then A×B = B ×A.
Since we have now established implications in both directions, we see that

if A and B are nonempty sets, then A×B = B ×A if and only if A = B.

Problem 3.

Proposition 2. If Λ is a nonempty indexing set and A = {Aα|α ∈ Λ} is an
indexed family of sets, then (⋃

α∈Λ

Aα

)C
=
⋂
α∈Λ

ACα
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Proof. We prove that if Λ is a nonempty indexing set and A = {Aα|α ∈ Λ} is
an indexed family of sets, then (

⋃
α∈ΛAα)C =

⋂
α∈ΛA

C
α by proving(⋃

α∈Λ

Aα

)C
⊆
⋂
α∈Λ

ACα (1)

and ⋂
α∈Λ

ACα ⊆

(⋃
α∈Λ

Aα

)C
(2)

To prove relationship 1, let x be any member of (
⋃
α∈ΛAα)C . Thus x is not

in
⋃
α∈ΛAα. To have x not in

⋃
α∈ΛAα we must have x /∈ Aα for all α ∈ Λ,

or, equivalently, x ∈ ACα for all α ∈ Λ. Now, if x ∈ ACα for all α ∈ Λ then
x ∈

⋂
α∈ΛA

C
α , and so we have relationship 1.

To prove relationship 2, let x be any member of
⋂
α∈ΛA

C
α . This means that

x is a member of ACα for all α ∈ Λ, i.e., x is not in Aα for all α ∈ Λ. But if x is
not in Aα for all α ∈ Λ, then x is also not in

⋃
α∈ΛAα, i.e., x is in (

⋃
α∈ΛAα)C .

Thus we have relationship 2.
Since we have both relationships 1 and 2, we can conclude that if Λ is a

nonempty indexing set and A = {Aα|α ∈ Λ} is an indexed family of sets, then(⋃
α∈Λ

Aα

)C
=
⋂
α∈Λ

ACα .

Problem 4. (Given A = {a, b, c, d}, B = {a, b, c}, and C = {s, t, u, v}, give
arrow diagrams for functions as follows or explain why such functions cannot
exist.)

A function f : A→ C whose range is C:
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A function f : A→ C whose range is {u, v}:

A function f : B → C whose range is C. This function can’t exist because
B is smaller than C — since each member of B can only map to one member
of C, it’s not possible to hit all the members of C.

A function f : A → C with the property that for all x and y in A, if x 6= y
then f(x) 6= f(y). The function shown at the beginning of this problem has this
property.

A function f : A → {s, t, u} with the property that for all x and y in A, if
x 6= y then f(x) 6= f(y). This is not possible because {s, t, u} is smaller than
A — anything that maps all members of A, as a function must, has to map at
least 2 to the same member of {s, t, u}.

Problem 5. Define g : Z→ Z× Z by

g(x) = (x, 2x). (3)

Then we have . . .

Proposition 3. The function g defined by Equation 3 is a homomorphism.

Proof. To prove that g is a homomorphism, we must prove that for all x and y
in Z, g(x+ y) = g(x) + g(y). So let x and y be integers. Then we see that

g(x+ y) = (x+ y, 2(x+ y))

= (x+ y, 2x+ 2y)

= (x, 2x) + (y, 2y)

= g(x) + g(y)

We have thus shown that g(x + y) = g(x) + g(y), and therefore that g is a
homomorphism.
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