Math 239 Problem Set 8 Solution

Problem 1. Is the set $\{4n - 1 | n \in \mathbb{N}\}\$ inductive?

This set can be written as $\{3, 7, 11, \ldots\}$, showing two examples of natural numbers k for which $k + 1$ is not in the set. The set is therefore not inductive.

Problem 2. Prove that

$$
\sum_{i=1}^n i^3 = \left[\frac{n(n+1)}{2}\right]^2
$$

Proof. The proof is by induction on n.

For the basis step, we let $n = 1$ and show that

$$
\sum_{i=1}^{1} i^3 = \left[\frac{1 \times 2}{2}\right]^2
$$

From the definition of summation

$$
\sum_{i=1}^{1} i^3 = 1
$$

$$
= 1^2
$$

$$
= \left[\frac{1 \times 2}{2}\right]^2
$$

For the inductive step, we assume that for some natural number $k \geq 1$

$$
\sum_{i=1}^ki^3=\left[\frac{k(k+1)}{2}\right]^2
$$

and show that

$$
\sum_{i=1}^{k+1} i^3 = \left[\frac{(k+1)(k+2)}{2} \right]^2
$$

Again using the definition of summation and algebra

$$
\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^{k} i^3 + (k+1)^3
$$

= $\left[\frac{k(k+1)}{2} \right]^2 + (k+1)^3$
= $\frac{k^2(k+1)^2}{4} + (k+1)^3$
= $\frac{k^2(k+1)^2}{4} + \frac{4(k+1)(k+1)^2}{4}$
= $\frac{(k^2 + 4(k+1))(k+1)^2}{4}$
= $\frac{(k^2 + 4k + 4)(k+1)^2}{4}$
= $\frac{(k+2)^2(k+1)^2}{4}$
= $\left[\frac{(k+1)(k+2)}{2} \right]^2$

In other words, we have shown that if

$$
\sum_{i=1}^k i^3 = \left[\frac{k(k+1)}{2}\right]^2
$$

then

$$
\sum_{i=1}^{k+1} i^3 = \left[\frac{(k+1)(k+2)}{2} \right]^2
$$

This result, and the basis step, prove by the principle of mathematical induction that 2

$$
\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]
$$

for all natural numbers $\boldsymbol{n}.$

Problem 3. Formulate and prove a conjecture about what the nth derivative of e^{ax} is

Proposition 1. For all natural numbers n ,

$$
\frac{d^n}{dx^n}(e^{ax}) = a^n e^{ax}
$$

Proof. The proof is by induction on n.

 \Box

For the basis step, we let $n = 1$ and show that

$$
\frac{d}{dx}(e^{ax}) = ae^{ax}
$$

This result follows immediately from the chain rule and the fact that

$$
\frac{d}{dx}(e^u) = e^u
$$

For the inductive step, we assume that for some natural number $k \geq 1$

$$
\frac{d^k}{dx^k}(e^{ax}) = a^k e^{ax}
$$

and show that

$$
\frac{d^{k+1}}{dx^{k+1}}(e^{ax}) = a^{k+1}e^{ax}
$$

From the definition of the $(k+1)$ th derivative, and noting that $a^k e^{ax}$ is differentiable, we have

$$
\frac{d^{k+1}}{dx^{k+1}}(e^{ax}) = \frac{d}{dx}(\frac{d^k}{dx^k}(e^{ax}))
$$

$$
= \frac{d}{dx}(a^k e^{ax})
$$

$$
= a \times a^k e^{ax}
$$

$$
= a^{k+1} e^{ax}
$$

We have thus shown that if, for some natural number $k\geq 1$

$$
\frac{d^k}{dx^k}(e^{ax}) = a^k e^{ax}
$$

then

$$
\frac{d^{k+1}}{dx^{k+1}}(e^{ax}) = a^{k+1}e^{ax}
$$

This result, together with the basis step, establishes by the principle of mathematical induction that for all natural numbers n ,

$$
\frac{d^n}{dx^n}(e^{ax}) = a^n e^{ax}
$$

Problem 4. Formulate and prove a proposition of the form "for all natural numbers $n \geq k$, there exist non-negative integers x and y such that $n = 4x+5y$," where k is a constant to be discovered by you.

Following hints in Sundstrom's Progress Check 4.10, I suspect that if I can find 4 consecutive natural numbers that can be written in the form $4x + 5y$, I will be able to prove that all larger naturals can also be written in that form. By trying successive natural numbers, I find that the first group of four that can be written in the desired form is $12 (= 4 \times 3 + 5 \times 0)$, $13 (= 4 \times 2 + 5)$, 14 $(= 4 + 5 \times 2)$, and $15 (= 4 \times 0 + 5 \times 3)$. I thus conjecture

Proposition 2. For all natural numbers $n \geq 12$, there exist non-negative integers x and y such that $n = 4x + 5y$.

Proof. The proof is by induction on n. In the following, let $P(n)$ be the predicate "there exist non-negative integers x and y such that $n = 4x + 5y$ ".

For the basis step, note as shown above that $P(12)$, $P(13)$, $P(14)$, and $P(15)$ are all true.

For the inductive step, assume that for some natural number $k \geq 15$, P is true of all natural numbers m with $12 \le m \le k$, and show that $P(k+1)$ is also true. Note that $k + 1 = 4 + (k + 1) - 4$, and that $12 \leq (k + 1) - 4 \leq k$. Thus there exist integers x and y such that $(k + 1) - 4 = 4x + 5y$. Then

$$
k+1 = 4 + (k+1) - 4
$$

= 4 + 4x + 5y
= 4(x+1) + 5y

Since the integers are closed under addition, $x + 1$ is an integer, and so there exist integers $z = x + 1$ and y such that $k + 1 = 4z + 5y$, i.e., $P(k + 1)$ is true.

This result and the basis step establish, by the second principle of mathematical induction, that for all natural numbers $n \geq 12$, there exist non-negative integers x and y such that $n = 4x + 5y$. \Box