
Math 239 Problem Set 7 Solution

Problem 1. Prove that for all integers a, b, and d with d 6= 0, if d divides a or
d divides b then d divides ab.

Proof. The proof is in two cases, d divides a and d divides b.
For the first case, we assume that d divides a and show that d divides ab.

Since d divides a, a = kd for some integer k. Thus ab = kdb = kbd, which
proves, since kb is an integer, that d divides ab.

For the second case, we assume that d divides b and show that d divides ab.
Since d divides b, b = kd for some integer k. Thus ab = akd. Since ak is an
integer, this proves that d divides ab.

(The two cases here are essentially identical, and “real world” proofs would
probably just say something such as “for the second case we assume d divides
b and proceed similarly to case 1” rather than repeat the same logic a second
time.)

Problem 2. Determine whether the following proposition is true or false, and
prove it if true.

Proposition 1. For all integers m and n, 4 divides m2 − n2 if and only if m
and n are both even or m and n are both odd.

Proof. We prove each direction separately.
For the first part of the proof, we show that if m and n are both even or m

and n are both odd, then 4 divides m2−n2. The proof has in two cases, m and
n are both odd, and m and n are both even.

In the first case, we assume that m and n are both odd and show that 4
divides m2 − n2. Since m and n are both odd, there exist integers a and b such
that m = 2a + 1 and n = 2b + 1. Thus

m2 − n2 = (2a + 1)2 − (2b + 1)2

= 4a2 + 4a + 1− 4b2 − 4b− 1

= 4(a2 + a− b2 − b)

Since a2 + a− b2 − b is an integer, this shows that 4 divides m2 − n2.
For the second case, we assume that m and n are both even and show that

4 divides m2 − n2. Since m and n are both even, there exist integers a and b

1



such that m = 2a and n = 2b. Thus

m2 − n2 = (2a)2 − (2b)2

= 4a2 − 4b2

= 4(a2 − b2)

Since a2 − b2 is an integer, this shows that 4 divides m2 − n2.
We have now completed the proof for the first direction, namely if m and n

are both even or m and n are both odd, then 4 divides m2 − n2.
For the second part of the proof, we assume that 4 divides m2−n2 and show

that either m and n are both even or m and n are both odd. We prove the
contrapositive, i.e., that if one of m or n is even and the other odd, then 4 does
not divide m2−n2. Once again the proof has two cases, first that m is odd and
n even, and second that m is even and n odd.

In the first case (m is odd and n even), there exist integers a and b such that
m = 2a + 1 and n = 2b. Thus

m2 − n2 = (2a + 1)2 − (2b)2

= 4a2 + 4a + 1− 4b2

= 4(a2 + a− b2) + 1

Since a2 + a − b2 is an integer, 4 cannot divide 4(a2 + a − b2) + 1, and so we
have shown that if m is odd and n even, then 4 does not divide m2 − n2.

For the second case (m is even and n odd), there exist integers a and b such
that m = 2a and n = 2b + 1. Thus

m2 − n2 = (2a)2 − (2b + 1)2

= 4a2 − 4b2 − 4b− 1

= 4(a2 − b2 − b)− 1

Since a2 − b2 − b is an integer, 4 cannot divide 4(a2 − b2 − b)− 1, and we have
shown that if m is even and n odd, then 4 does not divide m2 − n2.

These two cases show that if one of m or n is even and the other odd, then
4 does not divide m2−n2, and thus its contrapositive, if 4 divides m2−n2 then
either m and n are both even or m and n are both odd.

We have now established both directions of the biconditional, and so we have
proven that for all integers m and n, 4 divides m2 − n2 if and only if m and n
are both even or m and n are both odd.

Problem 3. Prove that for all real numbers x and y, |xy| = |x||y|.

Proof. The proof is in four cases, namely x < 0 and y < 0, x < 0 and y ≥ 0,
x ≥ 0 and y < 0, and x ≥ 0 and y ≥ 0.
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In the first case x < 0 and y < 0, so xy > 0. This in turn means |xy| = xy =
(−x)(−y) = |x||y|.

In the second case x < 0 and y ≥ 0, so xy ≤ 0, which in turn means
|xy| = −(xy) = (−x)y = |x||y|.

In the third case x ≥ 0 and y < 0, so xy ≤ 0, which in turn means |xy| =
−(xy) = x× (−y) = |x||y|.

In the fourth case x ≥ 0 and y ≥ 0, so xy ≥ 0 and thus |xy| = xy = |x||y|.
We have now shown that in all possible cases |xy| = |x||y|, proving that for

all real numbers x and y, |xy| = |x||y|.

Problem 4. Prove that if a is an integer and a ≡ 0 (mod 5) then a2 ≡ 0
(mod 5). Then prove that 5,344,580,232,468,953,153 is not a perfect square.

Proposition 2. If a is an integer and a ≡ 0 (mod 5) then a2 ≡ 0 (mod 5).

Proof. We assume that a ≡ 0 (mod 5). Then by Part 3 of Sundstrom’s Theorem
3.28, a2 ≡ 02 (mod 5). Since 02 = 0, this proves that if a is an integer and a ≡ 0
(mod 5) then a2 ≡ 0 (mod 5).

Proposition 3. The number 5,344,580,232,468,953,153 is not a perfect square.

Proof. Notice that 5, 344, 580, 232, 468, 953, 153 ≡ 3 (mod 5). The proof then
proceeds by contradiction. Assume that 5,344,580,232,468,953,153 is a perfect
square. Then there exists an integer a such that a2 = 5, 344, 580, 232, 468, 953, 153.
We now consider two cases, namely a is congruent to 0 (mod 5) and a is not
congruent to 0 (mod 5).

In the first case, a ≡ 0 (mod 5), we know from Proposition 2 that a2 ≡ 0
(mod 5), but we have already determined that 5, 344, 580, 232, 468, 953, 153 ≡ 3
(mod 5).

In the second case, a is not congruent to 0 (mod 5), Sundstrom’s Proposition
3.33 tells us that a2 ≡ 1 (mod 5) or a2 ≡ 4 (mod 5), but we have already
determined that 5, 344, 580, 232, 468, 953, 153 ≡ 3 (mod 5).

Thus, in both possible cases the assumption that 5,344,580,232,468,953,153
is a perfect square leads to a contradiction. We have therefore proven that
5,344,580,232,468,953,153 is not a perfect square.
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