Math 239 Problem Set 3 Solution

Problem 1. Construct a truth table for $P \leftrightarrow Q$

P	Q	$Q \to P$	$P \to Q$	$Q \to P \land P \to Q$
Τ	Τ	Τ	Τ	T
Τ	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
F	\mathbf{T}	\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$

Problem 2. Show that $(P \to Q) \land P) \to Q$ is a tautology.

The easiest way to show this is via a truth table:

P	Q	$P \stackrel{\circ}{\rightarrow} Q$	$(P \to Q) \wedge P$	$((P \to Q) \land P) \to Q$
\overline{T}	Τ	Τ	T	Τ
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{T}	${ m T}$	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${f T}$

Since the last column contains only "True," the statement is indeed a tautology.

Problem 3. Give a negation of "if you graduate from college, then you will get a job or go to graduate school."

Since the negation of $P \to Q$ is $P \land \neg Q$, this negation could be "you graduate from college but do not get a job or go to graduate school," keeping in mind that the "not" in the conclusion applies to "get a job or go to graduate school." This could be made a bit clearer, thanks to one of De Morgan's laws, as "you graduate from college but do not get a job and do not go to graduate school."

Problem 4. Give a formal proof, using truth tables, that if P, Q, and R are propositions, then $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$.

Proof. We assume that P, Q, and R are propositions, and show that $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$. Using a truth table with the two sides of the equivalence in its last columns, we see

P	Q	R	$Q\wedge R$	$P\vee Q$	$P\vee R$	$P \vee (Q \wedge R)$	$(P\vee Q)\wedge (P\vee R)$
\overline{T}	Τ '	` Т	Τ	Τ	Τ	Τ	T
Τ	T	F	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$
Τ	F	$^{\prime}$ $^{\prime}$	F	${ m T}$	${ m T}$	${ m T}$	${ m T}$
Τ	F	F	F	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	Τ	$^{\prime}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	Τ	\mathbf{F}	\mathbf{F}	${ m T}$	F	\mathbf{F}	\mathbf{F}
F	F	Τ	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
F	F	$^{\prime}$ F	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Since the rightmost two columns of the truth table are identical, we have proven that if P, Q, and R are propositions, then $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$. \square

Problem 5. Give a formal proof, using equivalencies, that if P and Q are propositions, then $\neg(P \leftrightarrow Q) \equiv (P \land \neg Q) \lor (Q \land \neg P)$.

Proof. We assume that P and Q are propositions, and show that $\neg(P \leftrightarrow Q) \equiv (P \land \neg Q) \lor (Q \land \neg P)$. Using the definition of the biconditional and one of De Morgan's law, we see

$$\neg(P \leftrightarrow Q) \equiv \neg((P \to Q) \land (Q \to P))$$
$$\equiv \neg(P \to Q) \lor \neg(Q \to P)$$

Now using the equivalence $A \to B \equiv \neg A \vee B$ and one of De Morgan's laws we have

We have thus shown that if P and Q are propositions, then $\neg(P \leftrightarrow Q) \equiv (P \land \neg Q) \lor (Q \land \neg P)$.