
Math 239 Problem Set 12 Solution

Problem 1. Given f : R→ R defined by f(x) = x + 1, find and prove correct
a simple expression for fn(x).

Proposition 1.1. If f : R→ R is defined by f(x) = x+ 1, then fn(x) = x+n.

Proof. The proof is by induction on n.
For the basis step, let n = 1. From the definition of the fn notation,

f1(x) = f(x)

= x + 1

= x + n

We have thus completed the basis step, showing that f1(x) = x + 1
For the induction step, we assume that for some natural number k ≥ 1,

fk(x) = x+k. We will then show that fk+1(x) = x+k+1. From the definition
of the fn notation,

fk+1(x) = (f ◦ fk)(x)

= f(fk(x))

= f(x + k)

= x + k + 1

We have thus established that for all natural numbers k, if fk(x) = x + k then
fk+1(x) = x + k + 1.

We have now proven by induction that if f : R→ R is defined by f(x) = x+1,
then fn(x) = x + n.

Problem 2. Prove the following:

Proposition 2.1. If f : A → B is a bijection, then f−1 : B → A is also a
bijection.

Proof. We prove that if f : A → B is a bijection, then f−1 : B → A is also a
bijection by first noting that f−1 is a function because f is a bijection. We then
show that f−1 is a bijection by showing that it is an injection and a surjection.

To show that f−1 is an injection, suppose that b1 and b2 are elements of B
such that f−1(b1) = f−1(b2) = a. Then f(a) = b1 and f(a) = b2. Since f is
a function, b1 must equal b2 in order for this equality to hold. Thus, whenever
f−1(b1) = f−1(b2), b1 = b2, and so f−1 is an injection.
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To show that f−1 is a surjection, let a be any element of A. Since f is a
function from A to B, there must be some b in B such that f(a) = b. But then
f−1(b) = a. We have thus shown that every element of A is the image under
f−1 of some element of B, so f−1 is a surjection.

Since f−1 is an injection and f−1 is a surjection, we have shown that if
f : A→ B is a bijection, then f−1 : B → A is also a bijection.

Problem 3. Prove the following:

Proposition 3.1. If f : S → T is a function and C ⊆ T , then f(f−1(C)) ⊆ C.

Proof. We prove that if f : S → T is a function and C ⊆ T , then f(f−1(C)) ⊆ C
by showing that any x that is a member of f(f−1(C)) is also a member of C. Let
x be in f(f−1(C)). Then there is a y in f−1(C) such that x = f(y). But f−1(C)
is by definition the set {y ∈ S|f(y) ∈ C}, so f(y) = x ∈ C. Thus any x that is a
member of f(f−1(C)) is also a member of C, proving that f(f−1(C)) ⊆ C.

Problem 4. Given that for any real numbers x > 0 and y there exists a natural
number n such that nx > y (Fact 1), and that for any real number x there is
an integer m such that x ≤ m but x 6≤ m − 1 (Fact 2), prove the following
propositions and theorem:

Proposition 4.1. For any real numbers x and y such that x < y, there is a
natural number n such that ny − nx > 1.

Proof. First note that since 1 > 0, a corollary to Fact 1 is that for any real
number z > 0, there exists a natural number n such that nz > 1. Then let
z = y − x. Since x < y, z > 0, and so by the corollary to Fact 1 there exists a
natural number n such that nz > 1. But since z = y − x,

nz = n(y − x)

= ny − nx

Thus ny − nx > 1. We have therefore proven that for any real numbers x and
y such that x < y, there is a natural number n such that ny − nx > 1.

Proposition 4.2. If x and y are real numbers such that x < y and n is a
natural number such that ny − nx > 1, then there is an integer q such that
nx < q < ny.

Proof. Let x and y be real numbers such that x < y, and let n be a natural
number such that ny − nx > 1. From ny − nx > 1, we see that ny > 1 + nx,
and so in turn ny − 1 > nx, or equivalently,

nx < ny − 1 (1)

Now, since the real numbers are closed under multiplication and every natural
number is also real, ny is a real number, and so by Fact 2 there exists an integer
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m such that ny ≤ m but ny 6≤ m − 1. Realizing that “not less than or equal”
is equivalent to “greater than,” we can rewrite these last relations as

m− 1 < ny ≤ m (2)

Subtracting 1 from both sides of the right-hand inequality in Equation 2 gives

ny − 1 ≤ m− 1 (3)

Combining Equations 1, 2, and 3 we see that

nx < ny − 1 ≤ m− 1 < ny

or
nx < m− 1 < ny

Now let q be m − 1. Since m is an integer and the integers are closed under
subtraction, this q is an integer, and so we have established that there exists an
integer q such that nx < q < ny. Thus, if x and y are real numbers such that
x < y and n is a natural number such that ny−nx > 1, then there is an integer
q such that nx < q < ny.

Theorem 4.3. For any real numbers x and y such that x < y, there is a rational
number s such that x < s < y.

Proof. Since x < y, Propositions 4.1 and 4.2 say that there is some natural
number n and some integer q such that

nx < q < ny

Now divide all three parts by n to get

x <
q

n
< y

Since n is a natural number, n 6= 0, and so q
n is a rational number. Call this

rational number s, and we have shown that for any real numbers x and y such
that x < y, there is a rational number s such that x < s < y.
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