Math 239 Problem Set 10 Solution

Problem 1. Letting Λ be an indexing set, $\mathcal{A} = \{A_{\alpha} | \alpha \in \Lambda\}$ be an indexed family of sets, and C be a set such that $A_{\alpha} \subseteq C$ for all $\alpha \in \Lambda$, prove that

$$\bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq C$$

Proof. We prove that $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is a subset of C by showing that every element of $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is also an element of C. Let x be any element of $\bigcup_{\alpha \in \Lambda} A_{\alpha}$. Then by the definition of the union of an indexed family of sets, there is some A_i such that $x \in A_i$. Now since A_i is a subset of C, x is also a member of C. Thus we have shown that any $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}$ is also in C, so $\bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq C$.

Problem 2. Determine whether functions f and g are equal, where $f : \mathbb{Z}_6 \to \mathbb{Z}_6$ is defined by $f(x) = (x^2 + 4) \pmod{6}$ and $g : \mathbb{Z}_6 \to \mathbb{Z}_6$ is defined by $g(x) = (x+1)(x+4) \pmod{6}$.

The first two parts of the question ask us to calculate the values of f and g, as follows:

x	f(x)	g(x)
0	4	4
1	5	4
$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	2	0
	1	4
$\begin{vmatrix} 4\\5 \end{vmatrix}$	2	4
5	5	0

Based on this table, f and g are not equal, because even though their domains and codomains are equal, there are values of x (e.g., x = 1) for which $f(x) \neq g(x)$.

Problem 3. Let $f : \mathbb{N} \to \mathbb{Z}$ be defined by

$$f(n) = \frac{1 + (-1)^n (2n-1)}{4}$$

and determine whether f is an injection and whether it is a surjection. Give a proof or counterexample for each conclusion.

In analyzing f, it is convenient to notice that for all natural numbers n, $2n-1 \ge 1$, and therefore f(n) can be less than or equal to 0 only if n is odd. Furthermore, since -1^n is negative for all odd naturals n, $f(n) \le 0$ whenever *n* is odd. Thus $f(n) \leq 0$ if and only if *n* is odd, which in turn implies that f(n) > 0 if and only if *n* is even.

Proposition 3.1. f is an injection.

Proof. We prove that f is an injection by showing that if f(n) = f(m) then n = m. Assume that n and m are natural numbers such that f(n) = f(m), and consider two cases: n is odd, or n is even.

For the first case, when n is odd, $f(n) \leq 0$. Since f(n) = f(m), f(m) must also be less than or equal to 0, and so m is also odd. Then f(n) = f(m) means

$$\frac{1 - (2n - 1)}{4} = \frac{1 - (2m - 1)}{4}$$

and so n = m.

For the second case, when n is an even natural number, f(n) is positive. f(m) must also be positive, implying that m is even. Then f(n) = f(m) means

$$\frac{1 + (2n - 1)}{4} = \frac{1 + (2m - 1)}{4}$$

and so n = m.

We have shown that in both cases, f(n) = f(m) implies that n = m, and so f is an injection.

Proposition 3.2. f is a surjection.

Proof. We prove that f is a surjection by showing that for every integer x there is a natural number n such that x = f(n). The proof is in two cases, namely $x \leq 0$ and x > 0.

For the first case, we let $x \leq 0$ be an integer, and find an odd natural number n such f(n) = x. Finding an odd natural number n such that f(n) = x is equivalent to finding an integer $m \geq 0$ such that f(2m + 1) = x. By basic algebra

$$\begin{array}{rcl} x & = & f(2m+1) \\ & = & \frac{1+(-1)^{2m+1}(2(2m+1)-1)}{4} \\ & = & \frac{1-(4m+2-1)}{4} \\ & = & \frac{-4m}{4} \\ & = & -m \end{array}$$

Thus any integer $x \leq 0$ is equal to f(-2x + 1); since -2x + 1 is an integer greater than or equal to 1, it is also a natural number and so in the domain of f.

For the second case, we let x > 0 be an integer and find an even natural number n such that f(n) = x. Finding an even natural number n such that f(n) = x is equivalent to finding any natural number m such that f(2m) = x. By basic algebra

$$x = f(2m)$$

$$= \frac{1 + (-1)^{2m}(2(2m) - 1)}{4}$$

$$= \frac{1 + (2(2m) - 1)}{4}$$

$$= \frac{1 + (4m - 1)}{4}$$

$$= \frac{4m}{4}$$

$$= m$$

In other words, any integer x > 0 is equal to f(2x); 2x is a natural number and so in the domain of f.

We have now shown that every integer can be computed as f of some natural number, and so f is a surjection.

Problem 4. Given that for any real numbers x > 0 and y there exists a natural number n such that nx > y (Fact 1), and that for any real number x there is an integer m such that $x \le m$ but $x \le m - 1$ (Fact 2), prove the following two propositions:

Proposition 4.1. For every real number x > 0, there exists a natural number n such that $0 < \frac{1}{n} < x$.

Proof. It is convenient to rename the variable x in the proposition to avoid confusion with x in Fact 1. Specifically, we show that for every real number z > 0, there exists a natural number n such that $0 < \frac{1}{n} < z$. Let z be a real number greater than 0. Then $\frac{1}{z}$ is also a real number greater than 0, call it y. By Fact 1 with x = 1, there exists a natural number n such that n > y. Since n > y and y > 0, $\frac{1}{n} < \frac{1}{y} = z$. Furthermore, since n is a natural number, n > 0 and so $\frac{1}{n}$ is also greater than 0. Thus we have shown that there exists a natural number n such that $0 < \frac{1}{n} < z$, as claimed by the proposition.

Proposition 4.2. For any real numbers x and y such that x < y, there is a natural number n such that $x < x + \frac{1}{n} < y$.

Proof. We show that for any real numbers x and y such that x < y, there is a natural number n such that $x < x + \frac{1}{n} < y$. Let x and y be real numbers with x < y, and let z = y - x. Since x < y, z > 0, and so by Proposition 4.1, there exists a natural number n such that $0 < \frac{1}{n} < z$. Adding x to each part of this inequality yields $x < x + \frac{1}{n} < x + z$. But x + z = x + (y - x) = y, and so we have $x < x + \frac{1}{n} < y$, as claimed by the proposition.