
Math 239 Problem Set 10 Solution

Problem 1. Letting Λ be an indexing set, A = {Aα|α ∈ Λ} be an indexed
family of sets, and C be a set such that Aα ⊆ C for all α ∈ Λ, prove that⋃

α∈Λ

Aα ⊆ C

Proof. We prove that
⋃
α∈ΛAα is a subset of C by showing that every element

of
⋃
α∈ΛAα is also an element of C. Let x be any element of

⋃
α∈ΛAα. Then

by the definition of the union of an indexed family of sets, there is some Ai such
that x ∈ Ai. Now since Ai is a subset of C, x is also a member of C. Thus we
have shown that any x ∈

⋃
α∈ΛAα is also in C, so

⋃
α∈ΛAα ⊆ C.

Problem 2. Determine whether functions f and g are equal, where f : Z6 → Z6

is defined by f(x) = (x2 + 4) (mod 6) and g : Z6 → Z6 is defined by g(x) =
(x+ 1)(x+ 4) (mod 6).

The first two parts of the question ask us to calculate the values of f and g,
as follows:

x f(x) g(x)
0 4 4
1 5 4
2 2 0
3 1 4
4 2 4
5 5 0

Based on this table, f and g are not equal, because even though their do-
mains and codomains are equal, there are values of x (e.g., x = 1) for which
f(x) 6= g(x).

Problem 3. Let f : N→ Z be defined by

f(n) =
1 + (−1)n(2n− 1)

4

and determine whether f is an injection and whether it is a surjection. Give a
proof or counterexample for each conclusion.

In analyzing f , it is convenient to notice that for all natural numbers n,
2n − 1 ≥ 1, and therefore f(n) can be less than or equal to 0 only if n is odd.
Furthermore, since −1n is negative for all odd naturals n, f(n) ≤ 0 whenever
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n is odd. Thus f(n) ≤ 0 if and only if n is odd, which in turn implies that
f(n) > 0 if and only if n is even.

Proposition 3.1. f is an injection.

Proof. We prove that f is an injection by showing that if f(n) = f(m) then
n = m. Assume that n and m are natural numbers such that f(n) = f(m), and
consider two cases: n is odd, or n is even.

For the first case, when n is odd, f(n) ≤ 0. Since f(n) = f(m), f(m) must
also be less than or equal to 0, and so m is also odd. Then f(n) = f(m) means

1− (2n− 1)

4
=

1− (2m− 1)

4

and so n = m.
For the second case, when n is an even natural number, f(n) is positive.

f(m) must also be positive, implying that m is even. Then f(n) = f(m) means

1 + (2n− 1)

4
=

1 + (2m− 1)

4

and so n = m.
We have shown that in both cases, f(n) = f(m) implies that n = m, and so

f is an injection.

Proposition 3.2. f is a surjection.

Proof. We prove that f is a surjection by showing that for every integer x there
is a natural number n such that x = f(n). The proof is in two cases, namely
x ≤ 0 and x > 0.

For the first case, we let x ≤ 0 be an integer, and find an odd natural
number n such f(n) = x. Finding an odd natural number n such that f(n) = x
is equivalent to finding an integer m ≥ 0 such that f(2m + 1) = x. By basic
algebra

x = f(2m+ 1)

=
1 + (−1)2m+1(2(2m+ 1)− 1)

4

=
1− (4m+ 2− 1)

4

=
−4m

4
= −m

Thus any integer x ≤ 0 is equal to f(−2x + 1); since −2x + 1 is an integer
greater than or equal to 1, it is also a natural number and so in the domain of
f .

For the second case, we let x > 0 be an integer and find an even natural
number n such that f(n) = x. Finding an even natural number n such that
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f(n) = x is equivalent to finding any natural number m such that f(2m) = x.
By basic algebra

x = f(2m)

=
1 + (−1)2m(2(2m)− 1)

4

=
1 + (2(2m)− 1)

4

=
1 + (4m− 1)

4

=
4m

4
= m

In other words, any integer x > 0 is equal to f(2x); 2x is a natural number and
so in the domain of f .

We have now shown that every integer can be computed as f of some natural
number, and so f is a surjection.

Problem 4. Given that for any real numbers x > 0 and y there exists a natural
number n such that nx > y (Fact 1), and that for any real number x there is
an integer m such that x ≤ m but x 6≤ m− 1 (Fact 2), prove the following two
propositions:

Proposition 4.1. For every real number x > 0, there exists a natural number
n such that 0 < 1

n < x.

Proof. It is convenient to rename the variable x in the proposition to avoid
confusion with x in Fact 1. Specifically, we show that for every real number
z > 0, there exists a natural number n such that 0 < 1

n < z. Let z be a real
number greater than 0. Then 1

z is also a real number greater than 0, call it y.
By Fact 1 with x = 1, there exists a natural number n such that n > y. Since
n > y and y > 0, 1

n <
1
y = z. Furthermore, since n is a natural number, n > 0

and so 1
n is also greater than 0. Thus we have shown that there exists a natural

number n such that 0 < 1
n < z, as claimed by the proposition.

Proposition 4.2. For any real numbers x and y such that x < y, there is a
natural number n such that x < x+ 1

n < y.

Proof. We show that for any real numbers x and y such that x < y, there is a
natural number n such that x < x+ 1

n < y. Let x and y be real numbers with
x < y, and let z = y − x. Since x < y, z > 0, and so by Proposition 4.1, there
exists a natural number n such that 0 < 1

n < z. Adding x to each part of this
inequality yields x < x + 1

n < x + z. But x + z = x + (y − x) = y, and so we
have x < x+ 1

n < y, as claimed by the proposition.
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