Example Induction Proof

Doug Baldwin and Math 239 Students

Oct. 19, 2016

Theorem 1. For all natural numbers n, every set with n elements has exactly 2^n distinct subsets.

Proof. The proof is by induction on n.

The basis case is n = 1. All sets with 1 element are of the form $\{a\}$ for some value a. Such a set has subsets $\{a\}$ and \emptyset ; there are $2 = 2^1$ of these subsets, and they are distinct from each other. Thus we have shown that all sets with 1 element have exactly 2^1 distinct subsets.

For the induction step, assume that all sets of k elements have exactly 2^k distinct subsets, for some $k \ge 1$, and show that all sets of k + 1 elements have exactly 2^{k+1} distinct subsets. Every set S of k+1 elements is of the form $\{a_1, a_2, \ldots, a_k, ak+1\}$ where the a_i are any distinct values. Any subset of S either does or does not contain a_{k+1} . All the subsets that do not contain a_{k+1} are subsets of $\{a_1, a_2, \ldots, a_k\}$; because this is a set of k elements, there are 2^k such subsets, each distinct from the others. Each subset that does contain a_{k+1} can be constructed by adding a_{k+1} to one of the subsets that does not contain it. There are therefore 2^k subsets that do contain a_{k+1} , and they are distinct from each other because the elements other than a_{k+1} distinguish them, and distinct from all the subsets that do not contain a_{k+1} because a_{k+1} itself distinguishes them. We have thus identified a total of $2^{k+1} + 2^{k} = 2^{k+1}$ subsets, each distinct from the others. We have also determined that there are no other subsets of S. Thus we have shown that if all sets of k elements have exactly 2^k distinct subsets, for some $k \ge 1$, then all sets of k+1 elements have exactly 2^{k+1} distinct subsets.

We have thus shown, by the Principle of Induction, that for all natural numbers n, every set with n elements has exactly 2^n distinct subsets.