Problem Set 8 - Arc Length and Curvature

Complete by Wednesday, March 4
Grade by Friday, March 6

Purpose

This problem set reinforces your understanding of arc length and curvature of vector valued functions. By the time you finish this problem set, I expect that you will be able to

- Use the formula for arc length of a vector-valued function to find arc lengths and solve related problems.
- Use the formulas for curvature and related quantities to solve problems.
- Use Mathematica to assist in solving problems related to vector-valued functions.

Background

This exercise is based on section 12.4 of our textbook, which we covered in classes between February 21 and 26.

Activity

Solve the following problems. For questions that ask you to use Mathematica, please do not use the ArcLength and ArcCurvature functions (more exactly, I expect you to be able to solve the problems without those functions; if you do so and then use the functions to check your answers, that's a fine way to go slightly beyond what I expect).

Question 1. Find the length of one turn of the 4 -dimensional helix $\mathbf{r}(t)=\langle 2 \sin t, \sqrt{3} t, 2 \cos t, 2 t\rangle$.
(Be prepared when grading this problem to discuss how you came up with the formula(s) you used for the calculation and whether it even makes sense to talk about a length in 4 dimensions.)

Question 2. Set up an integral to find the circumference of the ellipse $\mathbf{r}(t)=\langle\cos t, 2 \sin t\rangle$. Use Mathematica to numerically evaluate this integral (you won't be able to do it by hand).

Question 3. An ant crawls along the curve $\mathbf{r}(t)=\left\langle 2 t^{2}, t^{2}-1, \frac{\sqrt{5}}{2} t^{2}\right\rangle$, starting at $\mathbf{r}(1)$. The ant moves in the direction of increasing t, i.e., it moves through points on the curve associated with ever larger t values. Find the coordinates of the point the ant is at after it has crawled a distance of 1 unit.

Question 4. Find a unit vector that points in the direction the curve $\mathbf{r}(t)=\left\langle\cos \left(e^{t}\right), \sin \left(e^{t}\right), 0\right\rangle$ is turning when $t=\ln \pi$. Also find the curvature of $\mathbf{r}(t)$. Use Mathematica to carry out and organize the calculations (but remember not to use the ArcCurvature function).

Follow-Up

I will grade this exercise in a face-to-face meeting with you. During this meeting I will look at your solution, ask you any questions I have about it, answer questions you have, etc. Please bring a written solution to the exercise to your meeting, as that will speed the process along.

Sign up for a meeting via Google calendar. Please make the meeting 15 minutes long, and schedule it to finish before the end of the "Grade By" date above. If you worked in a group on this assignment and the group has one collective solution, the whole group can schedule a single meeting with me.

